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NONLINEAR DYNAMICS OF INFANT SITTING POSTURAL CONTROL
Joan Elizabeth Deffeyes, Ph.D.
University of Nebraska, 2009
Advisor: Nicholas Stergiou
Sitting is one of the first developmental milestones that an infant achieves. Thus
measurements of sitting posture present an opportunity to assess sensorimotor
development at a young age, in order to identify infants who might benefit from
therapeutic intervention, and to monitor the efficacy of the intervention. Sittitigrabs
sway data was collected using a force plate from infants with typicalopevent, and
from infants with delayed development, where the delay in development was due to
cerebral palsy in most of the infants in the study. The center of pressuretiesefiom
the infant sitting was subjected to a number of different analyses, botiotradiinear
analyses, and a number of nonlinear analyses based on information theory, nonlinear
dynamics, and artificial intelligence. The traditional linear measoir@ostural sway did
not detect a difference between the two groups, but several of the nonlinearas e
detect differences. Postural sway of infants with delayed developmenbuvakstb have
more repeated patterns in their postural sway, and to control posture on aish@wer t
scale than infants with typical development. Additionally, spectral asales
performed, and high frequency (20 -30 Hz) features were observed in the postyral sw
of infants with typical development that were not apparent in the postural swaym$ infa
with delayed development, and these high frequency features were pdstipubminent
in the posterior sway in the anterior-posterior axis in early sitting. Tgasrof the

features are not certain, but the fastest control is from stretch sefina stretch reflexes
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may be contributing to the postural sway control in infant sitting. Dynamierags

theory, as applied in developmental psychology, suggests that infants need toaxplore
wide range of postural sway control muscle synergies, in order that the gittigigt
behavior emerge. Infants with cerebral palsy often have muscle ggastgociated with
altered stretch reflexes, and this may limit the exploration of a widegge rof postural

control strategies, as compared to infants with typical development.
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CHAPTER1

INTRODUCTION TO THE DISSERTATION

The control of movement in humans is a complicated process as multiple sensory
signals must be integrated, and appropriate responses determined and executed. Even f
an apparently simple task such as upright sitting information from millions afrgens
cells, including retinal cells, vestibular cells, cutaneous sensory celégrgecells in
muscle spindles and Golgi tendon organs, and joint proprioceptive cells. Information
must be extracted from all of the various sensory input, and control decisions made and
implemented for hundreds of muscles. As complicated as control of sitting pasture i
infants with typical development still are able to acquire upright sittingesily in life,
at about age 6 to 8 months, while infants with certain motor pathologies, such ad cerebra
palsy, take longer to acquire the skill. Stable sitting allows the infant tb feacbjects
in his environment, and allows visual inspection of the environment. Additionally, sitting
is a major developmental milestone. Infants who don’t learn to sit by ages? year
typically never learn to walk (Fedrizzi, et al., 2000). Thus sitting is not only iapart
itself, but can serve as a window into the sensorimotor system of the develoairig inf
and provide insight into deficits in motor control in infants with developmental delay.

Human development can be viewed as an emergent process (Smith & Thelen,
2003), where behaviors such as sitting emerge as the organism matures in a manner tha
depends on the interaction of genetic and environmental influences. The old debate of
nature versus nurture is seen to be nonsensical, just as asking whether 5 times 3 is 15
because of the 5 or is it because of the 3? The answer is 15 because of themteracti

between the 3 and the 5, just as in the human emergent behaviors are a result of the
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nature-nurture interaction. In African societies where early sitsiegcouraged by
parents’ manipulating of infants’ posture, the infants develop sitting at aereayé and
spend more time in an unsupported sitting posture than American infants (Bril &
Sabatier, 1986). Thus the development of postural control is not entirely a matter of
maturation of biological control systems, but also is influenced by the environment in
which the infant develops. However, there is no culture in which infants develop
independent sitting skills at age 1 month, as the neuromuscular system appaneiotly ca
control sitting at that age regardless of environmental influences. Thepeezit of
postural control is not entirely a matter of the environment in which the infant develops
but also depends on the maturation of the biological control systems. It is thetimerac
of the biological system and the environment in which it develops that determines the
outcome of the infant’'s motor development, not simply biology or environment acting
alone. In a complex system, the property of emergence is a result of maagtiots
among many individual agents. The patterns formed by a flock of birds or a school of
fish, for example, emerge due to relatively simple rules being executedtby ea
individual as they respond to each other and to the environment (Grimm, et al. 2005).
Similarly, a multi-cellular human being, along with their behaviors includingylpr
sitting, emerge based on the interactions. Each neuron may be executaiyalyel
simple integrate-and-fire logic, but the complex behavior patterns thajeme a result
of the interactions of over 10,000,000,000 of them are not easily predicted just from a
knowledge of the integrate-and-fire logic that each is implementing.

The question arises then, if we want to characterize the emergence of sitting

behavior in infants, and if we want to quantify differences between infants witlaltypic
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development and infants with developmental delay, as occurs in cerebral rebgarev
the appropriate measures to use? In this dissertation, postural sway dai#ifrgm s
infants was characterized using a number of measures from nonlinear dynethitise
hope that features of system complexity that are overlooked by more conventieaal, |
measures would be apparent using the nonlinear measures. These measureisbea@ des
in detail in the relevant chapters, but include measures from information theory, chaos
theory, and fractal measures. What these measures have in common is geoditigit
system dynamic that linear measures of variability are lacking. Howtleeapplication
of these nonlinear measures is not straight forward, as compared to the liasarase
For example, calculation of the standard deviation is straight forward withla sing
formula. However, each of the nonlinear analyses measures requires thee\ss aif
parameters that must be decided on in order to perform the analysis. The @& dmaét
have been developed for use in heart rate analysis in cardiology, for examptetrha
appropriate for use in postural sway analysis, and vise-versa. This much afrkhe w
performed for this dissertation is simply trying to understand how these paramaktect
the analysis, and what values of the parameters are best for distinguifierandes
between sitting postural sway of infants with typical development from infatits w
delayed development.

The dissertation is divided into five chapters, each of which is a separatempaper
itself, three of which are already in print (Deffeyes, Harbourne, DeJong|igu,
Stuberg, & Stergiou, 2009; Deffeyes, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009;
Deffeyes, Kochi, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009). In short, the five

chapters are:
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1. Analysis of infant sitting postural sway, comparing a variety of linear and
nonlinear measures.

2. Analysis of late infant sitting postural sway using entropy measures.

3. Analysis of early infant sitting postural sway using approximate entropy

4. Analysis of fractal properties of infant sitting postural sway usinmgule¢d
fluctuation analysis.

5. Analysis of infant sitting postural sway using an artificial neural network

model.
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CHAPTER 2
NONLINEAR ANALYSIS OF SITTING POSTURAL SWAY

INDICATES DEVELOPMENTAL DELAY IN INFANTS

Abstract

Background: Upright sitting is one of the first developmental motor milestones
achieved by infants, and sitting postural sway provides a window into the developing
motor control system. A variety of posture sway measures can be used, but the optima
measures for infant development have not been identified.

Methods: We have collected sitting postural sway data from two groups of
infants, one with typical development (n=33), and one with delayed development and
either diagnosed with or at risk for cerebral palsy (n=26), when the infahtiekialoped
to the point where they could just maintain sitting for about ten seconds. Postural sway
data was collected while infants were sitting on a force platform, andriter oé
pressure was analyzed using both linear and nonlinear measures.

Findings: Our results showed that a nonlinear measure, the largest Lyapunov
exponent, was the only parameter of postural sway that revealed signifiteneindies
between infants with typical versus delayed development. The largest Lyapunov
exponent was found to be higher for typically developing infants, indicating lesgedpe
patterning in their movement coordination.

Interpretations: A nonlinear measure such as largest Lyapunov exponent may be
useful as an identifier of pathology, and thus is a potential candidate for mgdbker

success of therapeutic interventions.
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1. Introduction

Cerebral palsy is a result of damage that occurs to the brain early iopieeat,
typically before, during or shortly after birth. While cerebral palsy ispragressive in
that there is no further expansion of the lesion with age, the result of the earlyedamag
influences the rest of the infant’s life in many ways, both medical and sociar Mot
control abnormalities due to the initial neurological insult give rise to atypiogement
patterns, which in turn give rise to atypical development (Bleck, 1990). Motor
development in infants with cerebral palsy is delayed, meaning that developmental
milestones such as sitting, standing, or walking may occur later than in infémts wi
typical development, and in severe cases these milestones may never belnettal\lv
2004; Fedrizzi, et al., 2000 ).

There is both strong theoretical support for the idea that early interventjon ma
result in more desirable outcome (Landsman, 2006), as well as evidence-based support
(Blauw-Hospers, et al., 2007; Blauw-Hospers & Hadders-Algra, 2005). Cgrtainl
intervention early in development is seen as being beneficial among cliracttipners
(Gardner, 2005). Early intervention requires early identification of infantswould
benefit from the intervention, however current methods for early identificatioarebral
palsy are inadequate (Donohue & Graham, 2007). Not only are many infants with
cerebral palsy difficult to identify early, but false positives can oddalspn &

Ellenberg, 1982). Early and accurate identification of infants with cerebrgl sdbds/s
appropriate allocation of resources to help those who would benefit, avoid use of
resources on those who would not, and avoids the unnecessary anxiety for parents that an

incorrect identification brings. Unfortunately, early identification igiclft; however, a
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lack of complexity and low variation of movement is thought to be an indication that
physical therapy intervention would be indicated (Hadders-Algra, 2001).

Learning how to maintain upright sitting posture is an important motor
developmental milestone. Upright sitting allows visual exploration of the envirdnme
and serves as a stable platform for reaching nearby objects. If sittingegpieanot
developed by age 2 years, there is a significant chance that walking willogeve
achieved (Wu, et al., 2004; Fedrizzi, et al., 2000 ). Additionally, because sitting is one of
the first motor developmental milestones an infant achieves in life, detecting
abnormalities in infants’ sitting posture control provides an opportunity to ident&gts
with motor control pathologies much earlier in life than, for example, waitingttatil
walking or talking milestones have been missed. Thus characterizing sitttagepos
differences in infants with cerebral palsy and infants with typical dpwent has the
potential to allow early and objective identification of infants who would benefit fr
intervention (de Graaf-Peters, et al., 2007).

Linear techniques such as path length or range of movement can be used to
describe how much the center of pressure moves around (quantity of movement), but
these techniques don’t give any information about how well controlled the movement is
(quality of movement) (Stergiou, et al., 2006). For example, one infant may hage a lar
amount of postural sway due to poor control of movement, whereas another infant may
have a large amount of postural sway due to exploration of the environment after good
posture control skills have been learned. Thus measures of the quantity of movement do
not necessarily indicate the progress that an infant has made in control of movement

What are needed are measures of the quality of the center of pressure (CORgmove
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in order to develop a more complete understanding of the development of postural
control. Measures from nonlinear dynamics, such as the largest Lyapunov exponent
(LyE), approximate entropy (ApEn), and correlation dimension (CorrDim) areigirgm
new additions to the analytical tools used for physiologic time series sn@ysrgiou,

et al., 2004). Because these nonlinear analysis techniques are sensitive toipdtterns
data, rather than the overall magnitude of the fluctuations, they could be ideabtools f
qguantifying the quality of postural sway, thus making them potentially cligiaatful

for studying both the typical and pathological development of motor control in infants.
ApEn is a measure of system complexity made by counting how often patterns of
different lengths repeat in the time series (Pincus, 1991). The LyE is armeabtow
rapidly trajectories diverge in phase space, and the CorrDim estimatém#resionality

of the system (Sprott & Rowlands, 1998). See Stergiou, et al., (2004) for a moreteomple
discussion of these nonlinear measures.

These three nonlinear measures are derived from chaos theory and from
information theory, and have higher values for a random signal and lower values for a
periodic signal. A random signal has no patterns in it, and a periodic signal, sucheas a si
function has a simple pattern that repeats over and over again. While thesaofalysi
ideal signals can often be interpreted in terms of randomness or complexity, t
interpretation of physiologic signals is considerably more difficult. &fatte difficulty
lies in the fact that precise definitions of basic terminology are still exgnl¥Aor
example, whether a high value for approximate entropy should be interpreted as higher
complexity of the system (Vaillancourt & Newell, 2002a; Vaillancourt &wdié, 2002b)

or merely as more random (Goldberger, et al., 2002) has not been resolved. A clear
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definition of “complexity” is lacking. In comparing the results from differéntges, one
must be careful with the language used, as “complexity” defined by one author ma
differ from “complexity” defined by a different author.

In this paper we will speak of “optimal movement variability” as being itidiea
of the middle ground between random and periodic (Stergiou, et al., 2006). A random
response to a stimulus would be maladaptive, just as an overly rigid pattern of response
would be maladaptive. In fact, the mid-ground between these extremes isHikdlgst
control region for maintaining appropriate responses. The mathematical thebgosf
a branch of dynamical systems theory, suggests that the middle-ground, the region of
optimal movement variability, may be chaotic. The nonlinear measures tihavee
selected to use, ApEn, LyE, and CorrDim, all have high values for random signal (no
structure), low values for a periodic sine function (overly rigid structure), and
intermediate values for chaotic region where optimal movement variabifibyind.

The actual assessment of chaos in experimental data is somewhat comadroversi
due to limitations of the experimental data (Rapp, 1994), but despite the mathlematica
controversy, these algorithms have been successfully applied to many difietegical
and physiological systems, including postural sway data. In standing postureeaonli
techniques have been used successfully to give insight into posture control. Nonlinear
measures have been shown to be able to discriminate between pathologic and non-
pathologic populations using standing COP data, and thus someday may be clinically
useful measures. Patients with stroke (Roerdink, et al., 2006), traumatic brain injury
(Cavanaugh, et al., 2006), and Parkinson’s disease (Vaillancourt & Newell, 2000;

Schmit, et al., 2006) have all been shown to differ from non-pathologic controls using
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nonlinear measures applied to standing COP data. Most encouraging for the gitesent
is that COP data from standing posture in children with cerebral palsy ha®bednd
differ from typically developing children, using both linear and nonlinear mesasure
(Rose, et al., 2002; Donker, et al., 2008). Nonlinear measures of posture sway tend to
decrease with pathology, when significant changes are observed. This might be
interpreted as being more periodic, less complex, or less random.

The purpose of this paper was to investigate the use of sitting postural sway as a
measure of health of the motor control system in infants. To accomplish this, we have
used several linear and nonlinear time series analysis techniques tardeteym sitting
postural sway in typically developing infants differs from developmendailstyed
infants. We hypothesized that the infants with developmental delay will have more
periodic postural sway than typically developing infants. Additionally, to fughplore
the relationships between these various measures of postural sway, Peadisot
moment correlation coefficients were calculated, since highly ctedetaeasures may

be providing redundant information.

2. Methods

2.1. Participants

Twenty six infants with developmental delay and thirty three typically devejopi
infants participated in the study. Recruitment was done through newsléytns, dnd
pediatric physical therapists employed at the University. Infants idethelopmentally
delayed group were diagnosed with cerebral palsy, or else were developnusitalbd

and at risk for cerebral palsy (Table 2.1). At risk infants met one or more foiltheing
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conditions: premature delivery, brain abnormality based on ultrasound or MR, or
significantly delayed gross motor development as measured on standarshinepvtéh

no current diagnosis. Because a definitive diagnosis of cerebral palsy hadmotauks

we refer to these infants as developmentally delayed, because all scored below 1.5
standard deviations below the mean for their corrected age on the Peabody Gooss Mot
Scale (Folio & Fewell, 2000). However, the development is likely not just dklaye

also atypical (Chen & Wollacott, 2007).

This study was part of a longitudinal study in which the infants with
developmental delay received one of two different interventions. This anabsisfithe
data from the first month only, before any interventions had started, so all infénts wi
developmentally delay were analyzed as a single group. A consent forngmnes sy a
parent or guardian of all infant participants, and all procedures were appsotres b

University of Nebraska Medical Center Institutional Review Board.

2.2. Inclusion and exclusion criteria

Inclusion criteria for entry into the study for the typically developifgnts were:
a score on the Gross Motor Quotient of the Peabody Developmental Motor Scale-2 of
greater than 0.5 SD below the mean, age of five months at the time of initial data
collection, and sitting skills as described below in beginning sitting. Exclustena for
the sample of infants who are typically developing were: a score on the Grass Mot
Quotient of the Peabody Developmental Motor Scale-2 of greater than 0.5 SD below the
mean, diagnosed visual deficits, or diagnosed musculoskeletal problems. ladlytypic

developing infant was found to be less than 0.5 SD below the mean, and did not qualify
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for the study, the parents were informed of the score, the possibility of error in the
measurement, and advised to have the infant re-evaluated within the next 3 months.
Operational definitions of beginning sitting were used to determine the chidlimess

for entry into the study. Beginning sitting was defined as (a) head controlhsiahhten

trunk is supported at the mid-trunk, head is maintained for over one minute without
bobbing; (b) infant can track an object across midline without losing head control; (c)
infant may prop hands on floor or legs to lean on arms, but should not be able to reach
and maintain balance in the prop sit position; (d) when supported in sitting can reach for

toy; (e) can prop on elbows in the prone position for at least 30 seconds.

For the infants with developmental delay the inclusion and exclusion criteria were
as follows. Inclusion criteria were: age from five months to two yearsg $&ss than 1.5
SD below the mean for their corrected age on the Peabody Gross Motor Swhles, a
sitting skills as described above for beginning sitting. Exclusion critera:vage over
two years, a score greater than 1.5 SD below the mean for their corrected age on the
Peabody Gross Motor Scale, a diagnosed visual impairment, or a diagnosed hip

dislocation or subluxation greater than 50%.

2.3. Data Collection

For data acquisition (Figure 2.1), infants sat on an AMTI force plate (Watertown,
MA), interfaced to a computer system running Vicon data acquisition softwake (L
Forest, CA). Markers can be seen on the infant in Figure 2.1, and kinematic daksowas a
collected, but is not discussed in this paper. COP data were acquired through the Vicon

software at 240 Hz. A frequency analysis of both the medial-lateral ancoaipesierior
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components of all the COP time series from our preliminary data indicatetetrange

of signal frequencies that contain 99.99% of the overall signal power is betwed22 a

Hz. Therefore, the sampling frequency was set at 240 Hz in order to be above a factor of
ten higher than the highest frequency that might contain relevant signal.

For all data collection sessions, the infants were allowed time to get used to the
laboratory setting, and were at their parent's side or on their lap for preparad data
collection. Infants were provided with a standard set of infant toys for distrand
comfort. All attempts were made to maintain a calm, alert state byiadjdte infant to
eat if hungry, be held by a parent for comforting, or adapting the tempeshtheeroom
to the infant's comfort level. Testing was only proceeded when the infant waaln a
and relaxed state, not crying or otherwise making extended vocalization. A blasket w
placed over the plate for warmth and was securely adhered with double sided tape on the
ground. The investigator and the parent remained at one side and in front of the infant
respectively during all data collection, to assure the infant did not fall omieeicaecure.
The child was held at the trunk for support, and gradually the infant was guided into a
prop sitting position while being distracted by toys presented by the pareetti@nc
examiner could completely let go of the infant, data were collected for 10 secotals whi
the child attempted to maintain sitting postural control. Trials were pegtbumtil we
had collected three trials that are acceptable for our criteria, othatitffant was
indicating that they were done. At any time the child became irritated; shi®savas
halted for comforting by the parent or a chance for feeding, and then resumeadenly
the child was again in a calm state. In some cases, if the infant wag foryanlong

period of time, then data was not collected at that session. Infants cameatotilieé
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within a single week, and we attempted to get three trials in each of thedsiors.

Segments of usable (described below) data were analyzed using custom MatLab
software (MathWorks, Nantick, MA). No filtering was performed on the data in twder
not alter the nonlinear results (Rapp, et al., 1993). Trials were recorded includiag f
plate data and video data from the back and side views. Afterwards segments were
selected by viewing the corresponding video. Segments of data with 2000 time steps (8.3
seconds at 240 Hz) were selected from these trials by examination of the video.
Acceptable segments were required to have no crying or long vocalization, no@drane
items (e.g. toys) on the force platform, neither the assistant nor the metiegiowching
the infant, the infant was not engaged in rhythmic behavior (e.g. flapping arms), and the
infant had to be sitting and could not be in the process of falling.

2.4. Data analysis

Linear measures of the variability present in postural sway wengatald using
customized MatLab software from the COP time series, using the methoddleggto,
et al., (1996), and included root-mean-square (RMS), maximum minus minimum (range),
length of the path traced by the COP (sway path), the area of a circle &ea) that
contains 95% of the COP data points, and the area of an ellipse (ellipse area) that
contains 95% of the COP data points. These parameters were selected according to
Chiari, et al., (2002), as being relatively independent of biomechanicalsgetgr height
and weight), which might be expected to change with development. These linear
measures characterize the quantity or amount of movement variabilignpmeshe data
(Stergiou, et al., 2006).

Three nonlinear measures of variability were used, approximate entropgt large
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Lyapunov exponent, and correlation dimension. Nonlinear measures of the variability
present in postural sway were calculated from the COP time seriescabeld by

Harbourne and Stergiou (2003) and Stergiou, et al., (2004). Specifically, the nonlinear
measures of largest Lyapunov Exponent (LyE) and the Correlation Dimensionr((orD
were calculated using the Chaos Data Analyzer software (professeeysrin, Physics
Academic Software; Sprott & Rowlands, 1998) using an embedding dimension of 6 for
all files, which had been determined as one higher than the highest value for a
representative sample of data segments using the Tools for Dynamieareqipplied
Nonlinear Sciences, LLC and Randle, Inc, Del Mar, CA). Using too low of an emigeddin
dimension results in points being next to each other in the phase space that do not belong
next to each other (i.e. too many false nearest neighbors); using too high of an eghbeddin
dimension can lead to too few nearby trajectories to do the analysis. Fotarmsia

the analysis, the same embedding dimension was used for all files, even ifdleey ha
dimension lower than 6. The Approximate Entropy (ApEn) was calculated usingtMatLa
code developed by Kaplan and Staffin (1996), implementing the methodology of Pincus
(1991), using a lag value of 4, an r value of 0.2 times the standard deviation of the data
file, and a vector length m of 2. These r and m values are typically used in thateaic

of ApEn for physiologic time series (Pincus & Goldberger, 1994), and the lag 4 values
was used due to slight contamination of the 240 Hz signal with a 60 Hz sinusoidal line
noise. This noise was due to the electric power distribution in North Americadiesg

Hz, which can result in contamination at this frequency, and at harmonics of this
frequency. All the above mentioned nonlinear measures characterize they/“gpiali

movement variability present in the data by examining the patterns and the arder tha

www.manaraa.com



17

exist in the COP time series by evaluating point-by-point the entiresda(&tergiou, et
al., 2006).

Infants came to the lab twice within a single week, and we attempted to get three
trials in each of the two sessions. Sometimes the infant would cry, or not seay @eat
the force plate, and data could not be collected for these sessions. Thus the analysi
results for six trials in most cases, or fewer if we could not colledixatials, were
averaged, and statistical analysis performed on the average. The infaets in
developmental delay group were somewhat less willing to sit for multiple tria
compared to infants in the typical development group. Infants with developmental dela
on average had 5.15 trials per infant; where as infants with typical development had 5.55
trials per infant.

2.5. Statistical Analysis

Independent t-tests were used to compare the measures of postural sway from the
infants with typically development and the infants with delayed development. Wheze
thirteen different measures of postural sway that were compared, s@aiggefwas set
at p <.004, based on a Bonferroni correction for multiple comparisons (.05/13).
Additionally, Pearson product-moment correlation coefficients were caddubettween
the different measures of postural sway for the infants with typical develdpand
again for the infants with delayed development. For the correlation analysesy¢here
156 total correlations calculated, so the significance level was set at p < .000821, bas
on the Bonferroni correction (.05/156). For independent t-tests and correlation analysis

(described in detail below), all the data available was used.
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3. Results

The age of the infants with typical development was 5.0 months (std 0.6 months).
The age of the infants with delayed development was 13.3 months (std 3.4) months. Thus
the infants with delayed development were older than those with typical developsnent, a
would be expected since all the infants entered the study when they wemmiddra si
level of motor skill development (able to sit for about ten seconds).

Results of independent t-tests showed significant differences between the
typically developing and delayed developing infants only for the Lyapunov exponent
(Table 2.2), both in the anterior-posterior direction and in the medial-lateretiaiire

The correlation analysis showed that the linear measures of postural sveay w
often strongly positively correlated with each other, except for sway pathotioinfants
with typical development (Table 2.3) and infants with developmental delaye(Zabl
The nonlinear measures tended to not be strongly correlated with each otherfaexcept
the approximate entropy in the anterior-posterior direction and the approxntaipy
in the medial-lateral direction were positively correlated.

Approximate entropy and correlation dimension were strongly negatively
correlated with many of the linear measures, but never with sway path. Tinenbya
exponent was not significantly correlated with any of the linear or othemeanli
measures. These trends were seen in postural sway from both infantgpiedh ty
development and infants with delayed development. There were more significant
correlations of the postural sway measures for infants with typical devetapwhich
may be due to a somewhat larger sample size (n=33 for typical development gsugp ve

n=26 for delayed development group, over 25% more in the group with typical
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development).

4. Discussion

We hypothesized that the infants with developmental delay likely due to cerebral
palsy will have more periodic postural sway than typically developing sfand our
data supported this hypothesis. In fact, the Lyapunov exponent was found to be
significantly higher for sitting postural sway of typically developinignts than for
delayed infants. Optimal variability theory (Stergiou, et al., 2006) does notedhatr
the LYE be less for the pathologic condition. Instead, it suggests that thereptsnaal
value, and the pathology exists if the LyE is either too high or too low. However, for
posture data, with a fixed point intrinsic dynamic, the tendency is for raguéar
postural sway to be associated with pathology (Vaillancourt & Newell, 2002a). The
ApEn and the CorrDim were not sensitive to differences between the two groups in the
present study, while the LyE was found to be more sensitive to the differencetinalpos
sway dynamics between these two populations than ApEn or CorrDim.

We included a variety of different linear and nonlinear analytical technfques
analysis of postural sway data from sitting infants. The linear measucksubes study
include range, root-mean-square, length of the sway path, and area coviredugy
path. These linear techniques were chosen from those considered by ChiaR@d2).,
for postural sway data as being relatively insensitive to body mass parsnae
important consideration for a methodology to be applied to developing infants whose
mass is changing rapidly with growth. The other class of postural swaymegs#sat we

included was nonlinear analysis techniques, which were taken from nonlinear ciynami
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(chaos theory) and information theory. The nonlinear analysis techniques included ApE
LyE and CorrDim.

From all these measures, the LyE measure of postural sway was the only one of
these measures that was significantly different between infants witdaltygrsus
delayed development. The infants with delayed development were found to have postural
sway with a lower LyE than infants with typical development. The Lyapunov exp@nent i
derived from chaos theory, and is a measure of how rapidly trajectoriegedingghase
space (Alligood, et al., 1996). The LyE is a classic test of whether a systhaoi& or
not, with a positive LyE being consistent with the system being chaotic. We \ikaito
understand the nature of the difference in the LyE between these groups.

As mentioned in the introduction, there are a wide variety of differences to be
expected between infants with cerebral palsy and infants with typical develbpme
Dynamic systems theory has been used to describe infant sitting (Th&penter,

1998), and we expect the postural control system dynamics to be altered in ittants w
developmental delay or cerebral palsy, as compared to infants with typicklpieeat.

A limitation of this study is that because we enrolled infants just as theyabés to sit
upright, the developmentally delayed infants were older than the infants with typica
development. Thus it is possible that age is a contributing factor to the observed
differences. However, we find that none of the linear measures showed aangnific
difference between the postural sway of infants with delayed versusl tyguwedopment.
Instead, the difference between the two groups was seen in the LyE, a nieasisre t
sensitive to patterns in the movement.

Mathematically, the LyE indicates exponential divergence of trajestoriphase
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space. Embedding the postural sway data in a phase space means that, foriexample

two dimensional phase space, velocity would be plotted versus position. Imagiake that
some point in time, the postural COP data has a certain velocity and position. Then the
infant sways around, but at a later time the infant has the same velocity amuh@ssi

the previous time. These two points would be close to each other in the phase space plot.
Does the infant’s sway the second time follow a similar trajectory dgshéme, or

does it diverge from the first trajectory, and if so how much? The LyE quarthifses
divergence. For our analysis, the data was embedded in a six dimensional ph&se spac
using position plus 5 derivatives. A higher LyE indicates more divergence of the
trajectories.

Our interpretation of the LyE relevant to clinical considerations, which is
somewhat speculative, is that the COP from an infant with more diversity in motor
control strategies will follow different trajectories, whereas th&@Om an infant with
limited diversity in motor control strategies will tend to follow a simifajectory each
time, with the result being less divergence in the trajectories, and a cowlesyy lower
LyE. Thus the infants with delayed development appear to have less diversity in their
motor control strategies than infants with typical development, based on the lver L
values seen in the COP from sitting postural sway. Our assumption is that i infa
with typical development have better motor control, and thus we speculate that the
diversity in motor control strategies has a benefit, perhaps that the infintgpical
development are exploring a wider variety of solutions to postural control, and/or that
infants with delayed development are freezing degrees of freedom in order fewnare

control parameters to have to manipulate as they maintain upright posture. This
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interpretation supports the notion that the therapist should select activitiekothadral
encourage the infant to explore different strategies in motor control, rathedémaical
repetition of a single task.

In order to gain additional insight into the relationships between these various
measures of postural sway, we looked at the correlations between the satidble
variables are highly correlated, measuring one does not provide new ability to
discriminate between two populations that the other has not already provided. ¥ariable
with low correlations to other variables are of interest because they pdyangalsure
different aspects of the system. For example, the Lyapunov exponent and COP root-
mean-square were two such variables with low correlation in this studlye€¥, it was
the Lyapunov exponent that was sensitive to whatever aspect of movement that was
different about the sitting postural sway of infants with developmental delay amdsinf
with typical development, where as root-mean-square was not. In facyEheds not
highly correlated with any of the other variables, consistent with it baeimipaely
useful measure. A more in-depth analysis of the relationships between thesievaria
using principle component analysis is published elsewhere (Harbourne, Deffeyes
Kyvelidou, & Stergiou, 2009).

5. Conclusion

The ability to discriminate between the typical and delayed development groups
using nonlinear analysis of postural sway has the potential to add to the gpexific
diagnosis in the early months of life, when most standardized tests of infant devdlopme
have little predictive value. In addition, information from postural measuresitdlge

therapist in decision-making for therapeutic intervention and goal seftmtdpermore, it
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is desirable to be able to objectively quantify progress being made by intenverthe
developmentally delayed population, assuming that the therapeutic intervention moves
the quality of their movement patterns towards that of the typically developing
population. Sensitive objective measures that can quantify changes in motor @ontr
specific tasks would be useful in assessment of various interventions designest to assi
developmentally delayed infants to achieve more typical movement patterns. An
approach that includes nonlinear measures of postural sway, optimized for itifaot si
posture data, may contribute to these goals in the future. More work is needed to

determine if these potential benefits of nonlinear analysis can be realizedaal e/ork.
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Subject information for infants included in the developmentally delayed group

Subject Diagnosis at 2 years old Severity GMFCS
1. C01 Spastic Quadriplegic CP Severe 4
2.C02 Right Hemiplegic CP Mild 1
3. C03 Right Hemiplegic CP Mild 1
4. C04 Hypotonic, overall delays Moderate 3

5. CO5 Hypotonic, overall delays Mild* n/a
6. C06 Premature (28 weeks), BPD  Mild* n/a
7.C07 Premature (28 weeks), BPD  Mild* n/a
8. C08 Spastic lower extremities Moderate 1

9. C09 Hypotonic, overall delays Severe 3
10. C10 Athetoid CP Moderate 2

11. C12 Mixed Quadriplegic CP Moderate 3

12. C13 Spastic Quadriplegic CP Severe 4
13. C14 Spastic Quadriplegic CP Severe 4
14. C15 Right Hemiplegic CP Mild 1
15. C17 Noonan’s Syndrome Mild* n/a
16. C18 Athetoid CP Moderate 3

17. C19 Spastic Quad CP & MD Moderate 3

18. C20 Spastic Quadriplegic CP Severe 4
19. C21 Undiagnosed; motor delay Moderate 2
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20. C23 Spastic Quadriplegic CP Severe 4
21. C24 Mental Retardation Mild* n/a
22. C25 Spastic Diplegia Moderate 2
23. C26 Premature, hearing impaired  Mild* n/a
24. C27 Premature Mild* n/a
25. C29 Premature, left side weakneshlild 1

26. C30 Premature Mild* n/a

Note. *Diagnosis of CP excluded, BPD=Brochial Pulmonary Dysplasia, MD=Muscula
Dystrophy (Duchenne’s), GMFCS=Gross Motor Function Classificatiole St indicates

GMFCS is not applicable unless infant is diagnosed with cerebral palssafiRalet al., 1997)
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Table 2.2

Independent t-tests comparing postural sway measures of infants with dguedpment with

infants who have delayed development

DD? TD® p
mean std mean std
Linear
RMS AP 6.61 3.22 6.88 2.67 0.729
RMS ML 6.31 2.90 7.30 2.24 0.143
Range AP 32.63 12.96 37.86 11.70 0.110
Range ML 29.92 12.11 36.46 10.23 0.028
Sway Path 1024.26 222.31 1110.80 221.84 0.143
Circle 1037.32 834.03 1139.52 678.28 0.606
Ellipse 823.07 649.81 1017.00 661.95 0.265
Nonlinea
ApEn AP 0.613 0.245 0.695 0.213 0.171
ApEn ML 0.528 0.187 0.533 0.196 0.923
LyE AP 0.092 0.016 0.108 0.011 0.000
LyE ML 0.077 0.012 0.087 0.008 0.000
CorDim AP 4.262 0.306 4.357 0.261 0.204
CorDim ML 4.268 0.328 4.274 0.231 0.934
* Note. Significant at p <.004
a. n=26
b. n=33
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Table 2.3

Correlations between different measures of postural sway for infants pithaltgevelopment

31

Linear
RMS AP
RMS ML
Range AP
Range ML
SwayPath
Circle
Ellipse

Nonlinea
ApEn AP
ApEn ML
LyE AP
LyE ML
CorDim AP

Linear Nonlinear
Range ApEn LyE CorDim
RMS ML AP ML SwayPath  Circle Ellipse AP ML AP ML AP ML
0.63 0.94* 0.65* 0.10 0.93 0.91* -0.63* -0.40 -0.04 0.10 -0.8% -0.27
0.58 0.96 -0.04 0.82 0.80* -0.67* -0.79* 0.15 -0.23 -0.59 -0.62*
0.63 0.26 0.86* 0.86* -0.55 -0.37 0.02 0.20 -0.72 -0.24
0.00 0.81* 0.78* -0.64* -0.74* 0.18 -0.13 -0.63 -0.54
0.01 0.04 0.14 0.10 0.29 0.33 0.12 0.04
0.99 -0.66* -0.56 0.05 -0.03 -0.79* -0.36
-0.65 -0.54 0.04 -006 -0.760 -0.31
0.82 0.19 0.16 0.54 0.42
-0.10 0.23 0.36 0.52
0.45 0.15 -0.07
0.07 0.21
0.42

* Note. Significant at p< .000321; n=33
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Table 2.4

Correlations between different measures of postural sway for infants watededevelopment

Linear Nonlinear
Range ApEn LYyE CorDim
RMS
Linear ML AP ML SwayPath Circle Ellipse AP ML AP ML AP ML
RMS AP 0.49 0.94 0.52 0.23 0.85 0.85* -0.56 -0.44 -0.23 0.11 -0.81* -0.30
RMS ML 0.50 0.97 -0.20 0.80¢ 0.82x -0.22 -0.73 0.18 -0.14 -0.31 -0.44
Range AP 0.57 0.30 0.80¢ 0.81* -0.50 -0.36 -0.17 0.24 -0.71* -0.26
Range ML -0.10 0.81* 0.84* -0.16 -0.63 0.24 -0.01 -0.31 -0.44
SwayPath 0.08 0.03 0.05 0.44 -0.16 0.19 0.02 0.27
Circle 0.98 -0.41 -0.58 -0.07 -0.08 -0.66* -0.37
Ellipse -0.44 -0.65 -0.02 0.00 -0.66* -0.40
Nonlinear
ApEn AP 0.63 0.53 0.21 0.63 0.19
ApEn ML 0.14 0.34 0.42 0.39
LyE AP 055 037 0.14
LyE ML 0.01 0.08
CorDim AP 0.40

32

* Note. Significant at p< .000321; n=26
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Figure 2.1. Infant sits on force plate for data collection, with researchent jgend

sibling nearby.
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CHAPTER 3

USE OF INFORMATION ENTROPY MEASURES OF SITTING
POSTURAL SWAY TO QUANTIFY DEVELOPMENTAL DELAY IN

INFANTS

Abstract

Background

By quantifying the information entropy of postural sway data, the complexiheof t
postural movement of different populations can be assessed, giving insight into
pathologic motor control functioning.

Methods

In this study, developmental delay of motor control function in infants was assessed
by analysis of sitting postural sway data acquired from force plate cémis¥ssure
measurements. Two types of entropy measures were used: symbolic entropy,
including a new asymmetric symbolic entropy measure, and approximaip)eatr

more widely used entropy measure. For each method of analysis, paramegers we
adjusted to optimize the separation of the results from the infants with delayed

development from infants with typical development.

Results

The method that gave the widest separation between the populations was the
asymmetric symbolic entropy method, which we developed by modification of the
symbolic entropy algorithm. The approximate entropy algorithm alsorpsetbwell,

using parameters optimized for the infant sitting data. The infants with delaye
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development were found to have less complex patterns of postural sway in the
medial-lateral direction, and were found to have different left-right sstmynm their
postural sway, as compared to typically developing infants.

Conclusions

The results of this study indicate that optimization of the entropy algorahmfant

sitting postural sway data can greatly improve the ability to sepamatefants with

developmental delay from typically developing infants.

Background

Cerebral palsy, and other motor pathologies, give rise to altered patterns of
movement. In order to quantify altered movement patterns in infants, postuyal swa
during infant sitting can be analyzed for patterns using measures derived from
information theory, such as approximate entropy and symbolic entropy. Measures
such as these quantify patterns in time series data, making them poterelbfiyited
for assessment of altered patterns of movement in a variety of movemenogiathol
and may also provide insight into the nature of movement variability in human motor
control pathologies [1, 2, 3, 4].

Variability in control of human movement has historically been thought of in
terms of error in a control system [5]. For example, if one is tossing dartgjreesie
one might toss a bull's eye (meaning the dart goes in the very center ottHharcir
pattern of the target), but the dart doesn’t always go in the bull’'s eye because of
variability in the motor control system. This leads some to the conclusion that a motor
program was not executed correctly when the dart fails to go in the bull’snelye, a
from this perspective, variability is always an error in the motor contr@rsyA

more recent theory of motor control, based on dynamic systems theory, views the

www.manaraa.com



36

variability in motor control as part of the natural dynamics of the systerD{sjmic
systems theory represents behaviors as being local minima on a potentia, suitfa
the system proceeding towards a potential well like a marble rollingdewiae
bottom of a dish. Motor learning involves deepening the system’s potential well
associated with the behavior, and thus reducing variability. From this pevepéuot
potential well can never be infinitely deep, so there will always be sonabiligyiin
the behavior. While a person tossing darts may wish for zero variability in their
tosses, current theories on variability find that there are benefits to Ismnmg
variability in movement. The theory of optimal movement variability focuses on the
benefits of having a balance between rigid control and randomness in movement; i.e.
complexity [7]. Having complexity in movement allows for exploration of new
solutions to motor control in order to find optimal solutions. As stated by Hadders-
Algra and colleagues, “Complexity points to the spatial variation of movemeists. |
brought about by the independent exploration of degrees of freedom in all body
joints.” [8,9]. Thus entropy, a measure of complexity from information theory, might
be expected to differ in postural sway of infants with typical development, as
compared to infants with motor development pathologies such as cerebral palsy.
The application of the concept of entropy to information theory has resulted in
mathematical algorithms that are useful for describing randomness nnesipizl
data from physiological systems. Information is a concept used in informia¢iory
and is used in the sense that the string “ABABABABAB” has only a small amount of
information in it (it is easy to guess what the next letter is — so theatettddds no
new information, hence a low information content) but “ABAABABABB” has more
information (you could not determine for sure the next letter), even though both are

strings of characters of the same length. Claude Shannon [10, 11], developed the
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Shannon Entropy to describe the information content of a signal, with the idea that
transmission of the signal for communication purposes needs to preserve the
information content. If the goal of one’s research is to characterize irtfomna
experimental physiologic time series, rather than in communication appi€ais
Shannon did, there are some modifications that can be made to the algorithm. Perhaps
the most widely used entropy measurement for experimental data from phigsiolog
systems is the approximate entropy developed by Pincus [12]. The approximate
entropy may serve as an indicator for the complexity of the underlying pyisiol
processes that give rise to the variability in the time series datarjlistances

where pathology alters the complexity of the physiological procesenthapy value

may serve as a means to identify the pathological state. For exampla¢ cardi
pathology may be identified by loss of complexity in heart rate data [13], camtsiss
have been shown to cause loss of complexity in standing postural sway data [1], and
knee ligament injury alters complexity in gait [14].

Other authors have developed different algorithms to assess entropy in
experimental time series data [15, 16, 17], often with the goal of improving some
aspect of the analysis. For example, one might desire to find a measure ofrrasslom
that does not depend on the length of the time series, i.e. the entropy should remain
within a well defined range, regardless of the length of the time serieswadiid
facilitate comparisons with data acquired in different laboratories, fongea
Sample entropy has been used for this reason [15]. Both the approximate entropy and
the sample entropy look at changes comparing patterns of length L witimgpatte
length L+1. Alternatively, the scaling of patterns at greatly diffelengths, i.e. a
pattern repeats but one repeat is longer or shorter than another, has been studied using

multiscale entropy [16]. A data vector from time series data is a contisubsgst of
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the list of numbers that comprise the time series data. Comparison of data aector
different points along the time series is typically done by comparingalbes; with
similarity of the vectors being defined as one vector having values withinifiespec
range of those in the comparison vector. However, comparison of the vectors can be
performed using fuzzy logic, resulting in the fuzzy entropy [17], where the ter

“fuzzy” indicates that the similarity between the vectors is not a sibipéy “yes”

or “no”, but rather the degree of similarity is calculated.

Different types of data may be best analyzed using different measures of
complexity, and it is not clear a priori which type of analysis will be best for a
particular type of data. For infant sitting postural sway data, approxenatepy has
been used previously [18], but other methods have not been explored. For this work
we have chosen to use the approximate entropy [12], the symbolic entropy [19], and
asymmetric symbolic entropy, which is a modification of the symbolic entidbyle
in our Methods section we provide more details on the algorithm, in short the
symbolic entropy measures how much the infant’s postural sway crosses certain
locations on the force plate, called “threshold values”. Typically only one threshold is
used, the mean of the data. We modified the symbolic entropy algorithm to allow
multiple threshold values to be used. These thresholds need not be symmetric — i.e.
thresholds in one direction could be set differently from thresholds in the opposite
direction in order to investigate asymmetry in the data. The use of two thresholds i
motivated by the idea that the postural sway needs to be confined within the base of
support to avoid a fall. Therefore control of posture near the center of the base of
support might not be as critical as control of posture near the boundary. In order to
investigate postural control near the boundaries of the base of support, two threshold

values were used. Additionally, the use of different thresholds in the left and right
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directions allows the investigation of asymmetry of the postural sway, wéinchat
be addressed with other measures of complexity.

Learning how to maintain upright sitting posture is an important motor
developmental milestone. Infants use the upright sitting posture as a basehicdm
to explore their immediate environment by reaching for nearby objects andwo all
visual inspection of their immediate environment [20, 21]. Additionally, sitting is
important because it is one of first developmental milestones an infant aclailestes
thus serves as an early indicator of the health of the motor control systemh@2]. T
achievement of the sitting milestone is delayed in some pathologic populations, such
as those with cerebral palsy. Identification of infants with delayed met@iapbment
at the youngest age possible is of interest because treatment eaeyindif neural
plasticity is greatest may confer greater benefits. Some intervengithhods for
infants with cerebral palsy may prove better than others [23]. Quantifying the
differences between various interventions using sitting postural swagssifit
researchers evaluating the various interventions. Specifically, ciepalsgis a
multifaceted pathology, and there is great variability in the pathology atheng
affected population [24]. Thus what works best for one infant may not be optimal for
another infant. Early evaluation of the effectiveness of one intervention may allow
early change of treatment, while neural plasticity is still greaftes example, if an
infant is found to not be responding to a particular intervention, an alternative could
be implemented as soon as the first intervention can be determined to not be optimal.
Thus, use of sitting postural sway as an early window into the developing motor
control system could have potential clinical benefits.

While being able to extract information about the infant’s motor control

capabilities from sitting postural sway data could be beneficial, the kagtical
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method to do so has not yet been identified. Linear measures, such as standard
deviation or range of sway, may be used to describe how much movement there is in
the postural sway. However, the complexity of the movements that an infant makes
may be a better predictor of pathology that simply how much movement [9]. The
entropy measures discussed above are promising because they have beerddevelope
assess the complexity of a time series, rather than just assessinmthng af
movement. We anticipate that the complexity of the postural sway will gilggins
into the motor control pathology in cerebral palsy, as it has in other motor control
studies, including concussion [1], grip force in Parkinson’s disease [2], sterebtypica
rocking in severe retardation [3], and loss of visual/cutaneous feedback [4]. However,
the best algorithm to use for infant sitting needs to be determined. The reason for
comparing different parameter values is to understand the impact of paramogter c
on the outcome of the analysis, as different researchers will use differamtgpers
in their analysis. But more importantly, in order for a measure to be clinicsdiyl,
it needs to maximize the ability to classify individuals correctly into one ptiquilar
the other. The approach used here was to examine t-scores, the statishcdhsed i
independent t-test to compare two populations, with the goal of maximizing the
ability of the algorithm to separate the two populations.

Therefore, the goal of this investigation was to determine the utility efalev
different entropy algorithms in differentiating between sitting posdatea of infants
who have typical motor skills from sitting posture data of infants who have delayed
development of motor skills. We hypothesized that infants with developmental delay
will have altered complexity of postural control, because optimal variathkiyry
suggests that pathology can be associated with either higher or lower doyrgdlex

movement [7]. Further, we hypothesized that asymmetric measures of postul cont
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will vary in the infants with developmental delay as compared to typically algnel
infants in the anterior-posterior direction (forward-backwards directiarge $alling
forward results in a soft landing on the legs, but falling backwards needs to be more

carefully controlled.

Methods

Subjects

Infants were recruited into the study when they were just developing the
ability to sit upright, and all infants participated for several months. Howtheedata
used for this analysis is only from the last session for each infant, so it répribee
most mature sitting behavior that was collected for each infant. Recruivaertone
through newsletters, flyers, and pediatric physical therapists emplotfesl at
University. Twenty-two developmentally delayed infants, age 11.97 months to 27.8
months (mean=17.70, std=3.93); and nineteen typically developing infants, age 7.03
to 9.8 months (mean=8.13, std=0.71) participated in the study. Infants in the
developmentally delayed group were diagnosed with cerebral palsy, or else were
developmentally delayed and at risk for cerebral palsy. At risk infants metr one
more of the following conditions: premature delivery, brain bleeding (of aey ¢é
severity), diagnosis of periventricular leukomalacia, or significantly delgyoss
motor development as measured on standardized testing. Because a definitive
diagnosis of cerebral palsy could not been made by our collaborating physwe
refer to these infants as developmentally delayed, and all scored below 1.5dstanda
deviations below the mean for their corrected age on the Peabody Gross Motor Scale
[25]. Exclusion criteria included having an untreated, diagnosed visual impairment, a

diagnosed hip dislocation or subluxation greater than 50%, or an age outside the range
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5 months to 24 months at the start of the study, which was 4 months prior to the data
collection session used for this analysis. Typically developing infants werensd

for normal development by a physical therapist prior to admission into the study,
being excluded if they failed to score above 0.5 standard deviations below the mean
on the Peabody Gross Motor Scale, had a diagnosed visual impairment, had a
diagnosed musculoskeletal problem, or were older than five months at the start of the
study. A consent form was signed by a parent of all infant participants, and all
procedures were approved by the University of Nebraska Medical Centtutilomsal
Review Board.

Data collection

For data acquisition, infants sat on an AMTI force plate (Watertown, MA),
interfaced to a computer system running Vicon data acquisition softwa&e (La
Forest, CA). Center of Pressure (COP) data were acquired through the Vieareoft
at 240 Hz, in order to be above a factor of ten higher than the highest frequency that
contained relevant signal as established via spectral analysis from pilot work.
Segments of usable (described below) data were analyzed using custom MatLab
software (MathWorks, Nantick, MA). No filtering was performed in order to net alt
the entropy results [26]. Trunk and pelvis markers were also placed on the infant, but
the marker data was not analyzed for this study. An assistant sat to tedeft the
infant during data acquisition, and a parent or relative (typically the maideir)
front of the infant, for comfort and support, as well as to keep the infant’s attention
focused on toys held in front of the infant (Figure 3.1).

Trials were recorded including force plate data and video data from the back
and side views. Afterwards segments were selected by viewing the corregpondi

video. Segments of data with 2000 time steps (8.3 seconds at 240 Hz) were selected
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from these trials by examination of the video. The COP data allows meeéialtla
(side-to-side) and anterior-posterior (front to back) to be analyzed sdpara
Acceptable segments were required to have no crying or long vocalization, no
extraneous items (e.g. toys) on the force platform, neither the assistémt noother
were touching the infant, the infant was not engaged in rhythmic behavior (e.g.
flapping arms), and the infant had to be sitting and could not be in the process of
falling.

Data analysis

Symbolic entropy. Calculation of symbolic entropy was performed on postural sway
data in both the medial-lateral movement, and in the anterior-posterior movement,
using the methodology presented by Aziz and Arif [19]. It is a four step process:

1. Convert the time series into a binary symbol series based on a threshold value.
Time series data points below the threshold are replaced by 0, those above the

threshold value are replaced by 1.
Example time series:

{0.6073 0.8768 0.7129 0.4104 0.3791 0.1073 0.4267 0.6073 0.8768

0.7129}

With a threshold of 0.5718 (mean of the data) is converted to the following symbol

series:
Symbolseries:{1 1 1 0 0 O 0 1 1 1}

2. Words are formed from the symbols, each with a word length L. For our example,
using a word length of three:

1 1 1 0 0 0 0 1 1 1)

—
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—

etc...
that is then represented as a word series (Figure 3.2¢):

{(111) (110) (100) (000) (000) (001) (011) (111)}

3. The word series can be transformed by conversion of the binardecimal:
(000=0, 001=1, 010=2, 011=3, 100=4, 101=5, 110=6, 111=7) into a word symbol
series:

(76400137}

4. Shannon’s entropy can be calculated from this word symbol sendsthan
corrected and normalized as described by Aziz and Arif [19]. Howévés this
process of conversion to a symbolic time series that is ¢riticnding relevant
patterns in the time series.

The threshold value is a key aspect of the process, as pointstimehseries
are either above or below the threshold value. Selection of tomflaavthreshold
produces more ones than zeros, with a correspondingly high number of withrds
mostly ones. Conversely selecting too high of a threshold valuasr@suhore zeros
in the symbol series, with a correspondingly high number of wordssmaistly zeros.
If the symbol series is mostly ones (or mostly zeros) therdhesponding entropy
will be low, and the complexity of the time series will not be appropriatelyicagpin
the result. Thus selection of a threshold value must be done car€odymethod is
to select the mean value for the time series, thereby agshat half of the symbols
will be zeros and half will be ones, as was done by Aziz and [A8i]. As an
example, consider the analysis with a word length of three. Thdswibiat are
encoded with this approach will have a value 0 (000) if the infags sia the low

side of the mean for the time interval that corresponds to that, wora value of 7
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(111) if the infant stays on the high side of the mean for the tmterval that
corresponds to that word. The only way the word will have a valuehef ttan O or
7 will be if the infant moves past the average value during the ititeeval that
corresponds to that particular word. The entropy value calculatbdtms approach
will then be a reflection of the movement back and forth past teenmalue. The
important question is whether this reflects a clinically meaningful measunt.
Control of the system near the average value may not be thesersstive
measure of physiologic function of the postural control systemajt be that control
towards the extreme values of postural sway, where thergreater likelihood of
falling over, would be more diagnostic of pathology in heuromuscular colittith
just a single threshold value in the symbolic entropy, this caneadly e explored
fully. Thus a second method of calculating the symbolic entropydeased with
two threshold values. Choosing values of 0.3 and 0.8 for the threshold values, the time

series

{ 0.6073 0.8768 0.7129 0.4104 0.3791 0.1073 0.4267 0.6073 0.8768

0.7129 }

is converted to the symbol series (Figure 3.2d):

2 1. 1 1 0 1 1 2 1}
where 0 indicates a data point below the lower threshold, 2 indiaatleda point
above the upper threshold, and 1 indicates a data point in between #i®ltlse
Again, using a word length of three for this example, the followingds/are
obtained:

{(121), (211), (111), (110), (201), ( 011), (112), (121)}

with a word length of three and three symbols possible, there @re 23 possible
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words, coded from O to 26 as follows:
000=0 100=9 200=18
001=1 101=10 201=19
002=2 102=11 202=20
010=3 110=12 210=21
011=4 111 =13 211 =22
012=5 112=14 212=23
020=6 120=15 220=24
021=7 121=16 221=25
022=8 122=17 222=26
So that the word series formed is:
{16, 22, 13, 12, 10, 4, 14, 16}

As with the single threshold symbolic entropy, Shannon’s entropyiaalated from
the word series, and then the normalized corrected Shannon’s entropy is @hlculate

The thresholds in all cases were based on the mean value direaderies,
and new threshold values were calculated for each time .sémieome cases of
multiple thresholds, the thresholds were determined from the standaatiaewoi the
time series. The strategy in these calculations is to eeaenmovement at each time
step as it relates to the overall movement in that timessein other cases, the
thresholds were set as a certain number of millimeters abdveaw the mean. The
strategy in these calculations is to examine at the acstahde moved in millimeters
at each time step. In most cases the thresholds werensetesiycally, with the same
distance above and below the mean being used. However, a few non-sgmmetr
thresholds were also investigated. For example, 0 might bgnadsto data points

below minus three standard deviations, 1 assigned to data points batimesrthree
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standard deviations and plus one standard deviations, and 2 assignedttopainda
above one standard deviation. In this example, excursions have to bstédmeard
deviations away from the mean in the left direction, but only one standard deviation in
right direction, to trigger the assignment of a different symbol. Once thbdy have
been assigned, the Shannon entropy is calculated, and then normalized, dane

for the symbolic entropy, using the method of Aziz and Arif [19he Tentire
procedure is performed twice, once for data from the anteridefp@sdirection, and
once for the data from the medial-lateral direction.

Approximate entropy The approximate entropy (ApEn) was calculated using

MatLab code developed by Kaplan and Staffin [27], implementing the methodology
of Pincus [12]. Approximate entropy is a measure of how disorderly a timeiseries
[12] and can be used to assess disorderliness in movement when applied to COP time
series data. The general strategy in the calculation of approximaipyeistto

examine all the points in the data set for short pattern repeats (FigureTBea)

length of the repeat pattern is defined by a parameter m. This is done by using a
vector of length m starting at point pnd then counting how many other vectors at
other points p(j # i) in the time series have a similar pattern, repeating the procedure
for all vectors of length m in the time series, and summing the logarithm of the
results. The r parameter defines how similar a second vector has to be in order to be
counted. Another parameter, lag, indicates how many time steps there aenbetwe
points in one of the length m vectors. For example, if lag=1, then adjacent points are
used. To calculate approximate entropy, the log of this similarity countrisalined

by the number of points in the time series. Thus three parameters are used in this
algorithm, m, r, and lag. Typical values for biomechanics data analysegar€ll r =

0.2 to 0.25 times the standard deviation of the time series, and m =2 [2, 28, 29].
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Statistical analysis

One goal of the statistical analysis was to find the best entropy measure t
separate the two populations, since the entropy measure identified in this manner
would presumably have the best chance of having clinically useful sensiivity t
changes in postural control with physical therapy interventions, a long rangd goa
this research. In order to assess the effectiveness in separating fiagptlations
(delayed versus typical development), we used the t-score, which is a meakare of t
separation between the two populations relative to the variances of the populations.
The t-scores, also called t-statistics or t-values that are commonlynuseependent
t-tests [30], were calculated by dividing the difference in means betweésndhe
populations (mean of delayed development minus mean of typically developing) by
the root mean square of the standard deviations, for each set of parameters used for
each type of entropy, for COP data from both anterior-posterior and medral-lat
directions. A negative sign on the t-score indicates that the mean of the data from the
typically developing is larger than the mean of the data from delayed development.
The t-score indicates how much the two populations overlap for the given measure,
with larger magnitude indicating less overlap.

The analysis includes multiple comparisons, but they are not all independent.
In other words, the entropy calculated with one set of parameters is twanelth
the entropy calculated with a slightly different set of parameters, andsvaf t
scores in the tables 1-4 are similar to values nearby. We have 2 types of entrop
(approximate entropy and symbolic entropy) and 3 parameters for eacbxjagpate
entropy has m, r, and lag; symbolic entropy has number of threshold values, position
of threshold, and symmetry of thresholds). Thus, there are 2 times 3 equal with 6

parameters that we have adjusted independently. This number times 2 (for postural
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sway in the two directions: the anterior-posterior and medial-latexed$ @i total of

12. The Bonferroni correction requires the p-value to be adjusted for the number of
independent comparisons. Thus, we set thes®5/12 = .00417, corresponding to a
t-score of magnitude 3.04 for a t-tailed test with 39 degrees of freedom (gdefrs n

— 2; where pand n are the number of subjects sampled from the two populations).

Results

The t-score results (Table 3.1) indicated that the symbolic entropy does find
significant differences between the medial-lateral postural swaypichtly
developing infants compared to infants with delayed development. The t-score results
in the anterior-posterior direction were less able to detect separatiorebdtveewo
populations (Table 3.2). The largest t-scores are for two threshold analysisowi
symmetric thresholds, as presented in last row of two-threshold analysaisie 3.1.
The larger magnitude t-scores (Table 3.1) are connected with two threshokl value
being assigned relatively far away from the mean, with the thresholgees®n the
order of three standard deviations above and below the mean value of the COP. This
is consistent with the notion that control near the extreme positions (i.e. far to the
right or far to the left) is important, since poor control near the extreme \Gflthes
COP may result in a fall. The best threshold of those tested was the mean-3 std,
mean+1 std. This means that excursions farther away from the mean to tioe left s
(mean -3 std) and excursions not as far away to the right side (mean + 1 stdiewere t
important differences between the populations. A word length of about 4 to 7 was
found to be the most successful. The largest magnitude t-score of -3.48 corresponds to
p-value equal with 0.00125 for a two-tailed test and for degrees of freedom equal with
39. While the separation found between the two populations by this measure of

entropy is considered statistically significant, the clinical sigaifce of the measure
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identified here would have to be determined with additional experimentation.

The approximate entropy algorithm was also capable of detecting separat
between the infants with typical development and the infants with delayed
development. As with the symbolic entropy, the largest separations were seen
between typical development and delayed development in the medial-latestbdire
Also, as with symbolic entropy, the larger t-scores for approximate entrengy w
negative, indicating that entropy calculated from postural sway datéaots with
typical development is higher that entropy calculated from postural swagfdata
infants with delayed development. Overall, the best approximate entropy(tesult
score=-3.48) was with lag = 4, m =2, and r= 3*std. However several other
combinations presented also larger values than the critical t value of 3.04, indicating
significant differences between the two populations.

In order to visually examine the effect of these parameters on the distribution
of the entropy values, plots of the entropy values for the medial-lateral postayal s
were calculated with two different methods (Figure 3.3). The top plot in Figure 3.3
shows the approximate entropy values that were obtained using the following
parameters: m = 2, r = 0.2 std, and lag = 4. The bottom plot shows asymmetric
symbolic entropy values that were obtained using two thresholds, mean — 3 std and
mean + 1 std, and a word length of seven. This plot visually illustrates the benefit of
using a method with a larger magnitude t-score for analysis of sitting alositay in
the medial-lateral direction to compare these two populations, as the populations can
be seen to overlap quite a bit with the standard approximate entropy analysis (top)
where as the separation is better in the asymmetric symbolic entropgisinaly
(bottom).

Discussion
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One aspect of this work was the exploration of the effects of various
parameters in the entropy algorithms. While selection of the parameters tised i
calculation of entropy was found to affect the results, the parameter valuesé¢hat g
rise to statistically significant comparisons show consistent trendsthvattypically
developing infants having higher entropy values in sitting postural sway, andrsway |
the medial-lateral having the bigger differences between the populations.

Furthermore, two hypotheses were proposed in the introduction. One was that
the complexity of postural sway of infants with delayed development would belaltere
as compared to that for infants with typical development. Importantly, a finding of
this study was that the medial-lateral postural sway in sitting is alugpé of data to
compare infants with delayed development with those who are typically developing,
and that infants with typical development are seen to have more information entropy
in their movement in this dimension than infants with delayed development, as
measured by approximate entropy and symbolic entropy. This is consistent with the
notion that development of a postural control strategy involves an exploration of the
many possible solutions to Bernstein’s degrees of freedom problem in ordevéo arri
at a control strategy with optimal variability [7]. In this study we founditifanhts
with typical development appear to be exploring more varied motor stratgigiasg,
rise to a higher level of complexity in their postural sway. Therefore, lygadgtural
control is seen to be more complex as predicted by the optimal movement vgriabilit
[7].

The second hypothesis, that lack of symmetry in anterior-posterior posterior
control would be different between infants with delayed development and those with
typical development, was not supported. A surprising result of this study was that the

asymmetric symbolic entropy in the medial-lateral direction (Igfitrmovement)
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found larger separation between postural sway in infants with developmental delay
and those with typical development. We had expected this result in the anterior-
posterior axis, since the result of a large excursion in the posteriorahrectalling

over, whereas a large excursion in the anterior direction merely results mfiatite i
resting the torso on top of the legs. In fact, this was the motivation for trying the non
symmetric thresholds. However, the impact of the non-symmetric threshold was
actually seen in the medial-lateral direction. As described in the expeairseation,

a researcher is always positioned to the left of the infant. Perhaps havigg a la

object in the visual field unilaterally alters the infants’ postural swayjsaon has

been shown to impact standing postural sway in infants, although the effect was only
seen in infants after walking skills had been acquired [31]. If integration ofl visua
information is different in the two populations of infants, differences in posturgl swa
could result. Alternatively, the non-symmetric postural sway may be due & som
type of psychological response that the infants have to the presence of the adult on the
left side, and this response is different in the two populations of infants. Infants
develop a protective extension reaction [32], which is a reaction of the arms to falling
from a seated position. The protective extension reaction develops first in therante
direction, typically at around 6 months. Then it develops sideways, typicaliguatch
eight months. Finally, from about the tenth month, they are able to use their arms to
prevent backwards falls. An infant who has developed this reaction for sideways
falling may well respond differently to the presence of a researcher on ortkaside

an infant who has not yet developed this reaction. Based on this typical development
schedule of the protective extension reaction [32], we would expect that thélyypica
developing infants would have developed this response, where as the infants with

delayed development may not. However we did not test the infants for the protective
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extension response, so this is a speculative explanation. An alternative egplanati
which should be considered is that there may be some unconscious bias in how the
researcher sitting next to the infants responds to near falls in the two populations,
perhaps being more protective of falling movement away from themselveanisinf
that they perceive as having less control. The reason for the success of non-
symmetric thresholding in the medial-lateral axis is not clear and msuftather
investigation.

The results of this study indicate that optimization of the entropy algorahm f
infant sitting postural sway data can greatly improve the ability taapthe infants
with developmental delay from typically developing infants. However, thet#lis s
significant overlap of even the best entropy measures, which could resusein fal
positives or false negatives if used in a clinical setting. Further imprasmay be
possible, such as optimization of the number of thresholds used in the calculation of
symbolic entropy, optimization of the actual threshold values, and further exploration
of non-symmetric thresholds. Additionally, there are other entropy algaritihab
have not yet been applied to infant sitting postural sway data, which may offer an
improvement. Multiscale entropy analysis [16] has been used on gait data [33] and on
heart rate data [34]. Von Newman entropy, originally derived for quantum mechanics
applications, has been applied to EEG data [35]. Kolmogorov entropy has been used
on EEG data for epileptic seizure prediction [36] and on cell patch-clamp recordings
[37]. Success in finding an algorithm that can objectively quantify pathologic motor
patterns will help to identify infants who would benefit from therapeutic intervention,
as well as provide an important research tool for assessment of various indes/ent
for developmentally delayed infants.

Based on our exploration of different parameter combinations, we can make
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the following suggestions to researchers interested in using entropy nsaagtesr

work. Asymmetry can be an interesting aspect of postural sway data and oinogher t
series data. However, asymmetry is not often probed, or if it is, then two separate
force plates are required [38]. Use of the asymmetric symbolic entropylescwi

means to investigate asymmetry on postural sway with data from a singelae.
Approximate entropy is a useful choice for an entropy measure, but the valdes for t
parameters of m, lag, and r need to be optimized for the data set under investigation,

rather than accepting standard values for these parameters.

Conclusions

Information entropy measures can be used to characterize randomness in time
series data. We have used approximate entropy and symbolic entropy in irfant sitt
postural sway for infants with typical development, and infants with delayed
development, where the developmental delay was likely due to cerebral palsy. Whil
selection of the parameters used in the calculation of entropy was found toheffect t
results, differences between the two populations found were to be consistent for
statistically significant results. The significant results wereitifants with typical
development were found to have less repetition of fixed patterns in the medll-late
direction of postural sway than infants with developmental delay. This result is
consistent with the notion that infants with typical development are exploring a wide
range of movement patterns as they learn to control upright sitting postureeditis r
also suggests that therapeutic interventions that encourage the exploratioacf vari

movement patterns would be beneficial.
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Figure 3.1. Infant sits on force platform for data collection, with researcher at

parent near by.
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Figure 3.2. Entropy calculations

Entropy calculations: A. time series data. B. Apgmate entropy counts simil
vectors; here two similar vectors are shown in b@ldSymbolic entropy with or
threshold creates a time series based on whegh@ntis above or below the me:
Note that the value changes as the time series crossésrdsdold. D. Twc
thresholds allow sensitivity to movement that is close to the center, and tr

closer to the presumed edge of the base of suy
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Figure 3.3. Distribution of entropy values

Distribution of entropy values for medial-lateral postural sway for infahts are

typically developing versus those who have delayed development. Top plot (t-score =

-1.94) is approximate entropy with r = 0.2 std, lag = 4, m = 2. Bottom plot (t-score = -

3.48) is symbolic entropy with word length=6, thresholds of -3 std and +1 std.

Several of the subjects have the same symbolic entropy values as other ghigjects;

same number time series were analyzed for both top and bottom plots. The

populations (DD and TD) are much better separated by use of symbolic entropy than

approximate entropy.
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Table 3.1. Symbolic entropy t-scores for comparison of medial-lateral postal sway

t-scores for comparison of medial-lateral postural sway of infants vptbatydevelopment and with delayed development, based on symbolic

entropy calculated with various thresholds and word lengths, -3.48 is the |largegiuchat-score.

Word length used in symbolic entropy calculation
One threshold 1 2 3 4 5 6 7 8 9 10
M -0.93 -0.68 0.77 -1.85 -1.44 -1.40 -1.13 -1.05 .12 -1.18

Two thresholds

m - .01 std, m + .01 std -1.20 -1.61 -1.62 -1.47 391 -1.25 -1.24 -1.22 -1.31 -1.33
m-.1std, m+ .1 std -1.26 -0.32 -0.41 -0.71 20.7 -0.88 -1.07 -1.23 -1.30 -1.31
m - .2std, m + .2std -0.48 -0.86 -0.67 -1.19 -1.35-1.53 -1.46 -1.42 -1.32 -1.21
m - .5 std, m + .5 std 0.37 -1.23 -1.15 -0.51 -0.61 -0.77 -0.84 -1.03 -1.13 -1.21
m-1std, m+ 1 std 0.44 0.29 -0.53 -1.70 -1.98 .102 -1.86 -1.64 -1.38 -1.22
m - 2 std, m + 2 std -0.61 -1.07 -1.15 -0.71 -0.49 -0.43 -0.39 -0.36 -0.33 -0.31
m - 2.5 std, m + 2.5 std -1.13 -1.04 -1.20 -1.13 930 -0.82 -0.77 -0.76 -0.75 -0.77
m - 2.8 std, m + 2.8 std -0.98 -1.30 -1.52 -1.70 951 -1.99 -2.01 -2.02 -2.00 -1.97
m - 2.9 std, m + 2.9 std -0.97 -1.38 -1.66 -1.74 811 -1.82 -1.84 -1.92 -2.00 -2.05
m - 3 std, m + 3 std -2.68 -2.76 -2.57 -2.36 -2.52 -2.59 -2.64 -2.68 -2.71 -2.79
m - 3.1 std, m + 3.1 std -2.31 -2.67 -2.85 -2.85 732 -2.62 -2.55 -2.56 -2.59 -2.62
m - 3.2 std, m + 3.2 std -1.56 -1.92 -2.16 -2.24 302 -2.32 -2.31 -2.31 -2.34 -2.35
m - 3.5 std, m + 3.5 std -2.10 -2.24 -2.25 -2.24 252  -2.25 -2.25 -2.26 -2.27 -2.29
m-1mm, m+1mm -0.34 -1.79 -1.85 -1.69 -1.11 .081  -1.18 -1.34 -1.41 -1.45
m - 10 mm, m + 10 mm -0.30 -0.49 -0.25 -0.17 -0.30 -0.46 -0.57 -0.64 -0.67 -0.67
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m - 15 mm, m + 15 mm
m - 20 mm, m + 20 mm
m - 25 mm, m + 25 mm
m - 22 mm, m+ 22 mm
m - 30 mm, m + 30 mm
m - 35 mm, m+ 35 mm
m - 40 mm, m + 40 mm
m - 2 std, m + 3 std (A)
m - 1std, m + 3 std (A)
m - 3 std, m + 2 std (A)
m - 3 std, m + 1 std (A)

Three thresholds

m - .01 std, m, m + .01 std
m -.1 std, m, m + .1 std
m - .2std, m, m + .2std

m - .5 std, m, m + .5 std

m -1 std, m, m + 1 std

m - 2 std, m, m + 2 std

m - 2.5 std, m, m + 2.5 std
m - 2.8 std, m, m + 2.8 std
m - 2.9 std, m, m + 2.9 std
m - 3 std, m, m + 3 std

m - 3.1 std, m, m + 3.1 std
m - 3.2 std, m, m + 3.2 std
m - 3.5 std, m, m + 3.5 std

0.61
0.64
-0.39
-0.40
-0.07
0.30
0.22
-1.30
-1.39
-1.86
-2.52

-1.16
-1.49
-2.67

-0.27
-0.18

-2.89

-2.24
-1.32
-1.62
-1.25

-1.32
-1.02
-2.04

0.59
0.65
-0.53
-0.53
-0.14
0.46
0.45
-1.40
-1.54
-2.19
-2.64

-1.77

0.91
-1.38

0.19
-0.31
-2.58

-1.45
-1.05
-1.44
-0.96

-0.94
-1.26
-1.74

0.42
0.58
-0.39
-0.52
0.14
0.65
0.65
-1.20
-1.45
-2.28

0.19 0.06
0.59 0.60
-0.38 -0.30

-0.54 -0.51
0.43 0.48
0.77 0.82
0.77 0.82
-0.86 .70
-1.04  071.
-1.85 571

-2.61 -3.33*  -3.42*

-2.23
-1.11
-1.43

0.15
-0.60
-2.35
-0.95
-0.92
-1.54
-1.04
-1.21
-1.55
-1.68

-2.76 -2.25
-1.16 .502
-0.54 70.5
-1.13  331.
-1.30 680.
-2.66 -3.07
-1.41-1.24
-1.16-1.71
-1.54 -1.62
-1.50 161.
-1.24-1.09
-2.10 -1.52
-1.63-1.15

-0.05-0.04 -0.03
0.57 0.54 0.54
-0.26 -0.27 -0.28
0.45 -0.47 -0.47
00.5 0.51 0.50
0.84 0.85 0.85
0.82 0.82 0.81
-0.63 -0.60 -0.62
-1.06 -0.95 -0.81
-1.46 -1.34 -1.22
-3.48*  -3.05* -2.68

-1.20 -0.72 -1.05
-2.15 -1.47 -2.08
0.64 -0.58 -0.58
-1.51 -1.91 -2.51
-0.93 -0.63 -1.11
-2.29 -1.57 -0.61
-1.40 -0.99 -1.33
-1.46 -1.64 -1.57
-1.51 -1.53 -2.37
-1.67 -2.09 -3.06

-1.01 -1.04 -1.15
-1.46 -1.07 -1.46
-0.69 -1.28 -1.34
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0.00
0.55
-0.29
-0.47
0.48
0.84
0.80
-0.65
-0.67
-1.13
-2.28

-1.14
-2.77
-0.19
-1.69
-2.70
-0.37
-2.59
-1.71
-1.37
-1.90
-1.08
-1.41
-1.05

0.04
0.55
-0.32
-0.50
0.46
0.83
0.79
-0.68
-0.63
-1.08
-1.99

-1.85
-1.60
0.43
-0.70
-2.17
0.10
-2.21
-1.53
-1.04

-1.42
-1.22
-1.12
-0.89
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m-1mm, m, m+1mm 0.80 0.88 1.68 1.73 1.15 0.67 0.96 0.37 0.24 -0.13
m - 10 mm, m, m + 10 mm -1.24 -2.08 -2.20 -1.86 109 -0.22 0.24 0.92 1.43 1.48
m - 15 mm, m, m + 15 mm 0.41 0.57 1.52 -0.09 -0.21-1.07 -0.55 -0.54 -0.92 -2.06
m - 20 mm, m, m + 20 mm 0.49 1.46 1.76 1.45 1.28 410. 1.21 0.90 0.95 0.96
m - 25 mm, m, m + 25 mm 1.80 0.55 1.04 1.76 0.70 800. 0.85 1.24 0.55 0.82
m - 22 mm, m, m+ 22 mm -0.03 -1.25 -0.57 -0.45 60.7 -1.78 -1.50 -1.21 1.63 0.61
m - 30 mm, m, m + 30 mm 1.26 0.59 1.09 0.97 1.00 111. 0.83 -0.41 -0.27 -1.44
m - 35 mm, m, m + 35 mm 0.06 0.48 1.04 1.73 1.04 520. 0.62 1.14 1.02 0.55
m - 40 mm, m, m + 40 mm -0.23 -0.20 -0.21 -0.12 10.8 0.17 0.75 0.68 0.14 0.64
m - 2 std, m, m + 3 std (A) 1.26 0.80 0.62 1.15 41.0 0.79 1.00 0.92 0.90 1.01
m - 1std, m, m + 3 std (A) 0.85 0.37 0.75 0.61 0.26 0.84 1.30 1.84 1.33 0.91
m - 3 std, m, m + 2 std (A) -0.37 -0.12 0.65 0.65 .610 0.64 0.64 0.66 0.92 0.42
m - 3 std, m, m + 1 std (A) 1.08 0.94 1.09 1.02 90.9 1.06 1.45 0.02 -0.25 0.13

Note: t-scores with magnitude equal or larger than 3.04 are indicated with * and ai ihh@otm” indicates mean value for the time series,
“std” indicates the standard deviation for the time series, and “mm” indinatimetres of movement in the COP. (A) indicates asymmetric

thresholds were used
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Table 3.2. Symbolic entropy t-scores for comparisoaf anterior-posterior postural sway

t-scores for comparison of anterior-posterior postural sway of infants \pittatylevelopment and with delayed development, based on

symbolic entropy calculated with various thresholds and word lengths, -3.29 iy lmagnitude t-score.

Word length used in symbolic entrop}/ calculation
4 5 6 8

One threshold 1 2 9 10
M 0.67 1.63 1.48 0.83 0.68 0.52 0.69 0.80 0.91 0.95
Two thresholds

m -1 std, m+ 1 std 0.34 1.01 1.27 0.86 0.25 -0.13-0.20 -0.25 -0.25 -0.23
m - .5 std, m+ .5 std -0.25 1.17 0.51 0.11 -0.21 0.42 -0.13 0.15 0.31 0.40
m - .2std, m + .2std 1.53 1.24 1.12 1.01 1.20 1.14 1.04 0.98 0.97 1.02
m-.1std, m+.1std 1.67 0.52 0.80 0.86 1.08 11.3 1.62 1.79 1.87 1.92
m - .01 std, m + .01 std 1.32 0.41 0.75 0.53 0.72 .850 0.96 1.12 1.25 1.32
m - 2 std, m + 2 std 0.94 1.24 1.54 1.36 0.99 0.47 0.27 0.17 0.11 0.07
m - 2.5 std, m + 2.5 std 0.38 0.80 1.17 151 152 391 1.35 1.32 1.37 1.43
m - 3 std, m + 3 std 0.21 0.54 0.93 1.16 1.16 1.13 1.09 1.07 1.05 1.01
m - 3.5 std, m + 3.5 std -0.16 -0.07 0.01 0.12 0.20 0.26 0.31 0.29 0.29 0.30
m - 2.8 std, m + 2.8 std 0.98 0.89 0.90 0.94 1.04 .081 1.08 1.09 1.11 1.16
m - 3.2 std, m + 3.2 std 0.25 0.36 0.55 0.69 0.77 760 0.77 0.78 0.78 0.77
m - 3.1 std, m + 3.1 std 0.02 0.21 0.60 0.84 0.81 .780 0.76 0.70 0.69 0.67
m - 2.9 std, m + 2.9 std 0.22 0.38 0.65 0.86 1.01 .031 1.03 1.01 0.98 0.97
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m-1mm, m+1mm
m -10 mm, m+ 10 mm
m - 15 mm, m+ 15 mm
m - 20 mm, m + 20 mm
m - 25 mm, m+ 25 mm
m - 22 mm, m+ 22 mm
m - 30 mm, m + 30 mm
m - 35 mm, m+ 35 mm
m - 40 mm, m + 40 mm
m - 2 std, m + 3 std

m - 1std, m + 3 std

m - 3 std, m + 2 std

m - 3 std, m + 1 std

Three thresholds
m-1std, m,m+1std

m - .5 std, m, m + .5 std
m - .2std, m, m + .2std

m - .1 std, m, m+ .1 std
m - .01 std, m, m + .01 std
m - 2 std, m, m + 2 std

m - 2.5 std, m, m + 2.5 std
m - 3 std, m, m + 3 std

m - 3.5 std, m, m + 3.5 std
m - 2.8 std, m, m + 2.8 std
m - 3.2 std, m, m + 3.2 std

1.63
-0.60
-0.74
-1.33
-0.94
-0.81
-1.40
-2.03
-2.13

0.93
-0.02

0.16

0.54

-0.95
-0.53

0.43
-1.18
-1.01
-1.61
-2.28
-0.99
-0.95
-1.69
-0.97

1.29
-0.28
-0.36
-1.19
-0.74
-0.69
-1.12
-2.08
-2.15

1.29
-0.07

0.40

1.08

-1.58
-0.98
-1.09
-0.23
-1.40
-1.67
-2.37
-1.49
-1.18
-2.01
-1.17

1.15
-0.47
-0.19
-1.27
-0.89
-0.68
-1.14
-2.11
-2.13

1.58

0.25

0.73

1.50

-2.34
-1.46
-1.40

0.45
-2.76
-0.78
-2.66
-1.31
-1.05
-1.22
-1.64

1.32 1.21 061.

-0.70
-0.87
-1.66
-1.02
-0.85
-1.27
-2.12
-2.07

1.16 0.79 0.65
0.31 60.0 -0.11
0.82 0.56 0.36
1.04 0.66 0.42

1.40

-0.56 -0.58 -0.67
-0.20 -0.45 -0.74
-1.39 -1.48 -1.57
-0.89 -0.94 -0.99
-0.69 -0.77 0.80
-1.20 -1.22 -1.25
-2.13 -2.13-2.13
-2.11 -2.09 -2.07
1.53

0.51

0.80

1.53

-0.94 590. -0.50
-0.68 1.09 -1.04
-1.70 122 -2.88
0.61 330. -0.45
-2.81 -2.02 -2.73
-0.40 460. -1.65
-2.15-1.70 -1.13
-1.13  940. -1.22
-1.41-1.78 -2.46
-0.79 -1.16 -1.20
-1.43 -1.57 -1.54

0.51
-2.76
-1.63

0.22

-3.27*
-1.12
-0.90
-2.02
-1.68
-1.01
-1.65

0.98

-0.73
-0.97
-1.69
-1.01
-0.91
-1.30
-2.12
-2.06
0.62
-0.18

0.20

0.29

0.60
-2.25
-0.99

0.74

-2.12
-1.83
-0.43
-1.68
-1.47
-0.89
-1.51
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1.01
-0.73
-1.08
-1.66
-1.03
-0.95
-1.30
-2.12
-2.06
0.61
-0.26
0.05
0.27

-0.59
-1.29
-0.37
0.74
1.38
-2.06
-1.64
-1.89
-1.02
-0.93
-1.61

1.09
-0.74
-1.18
-1.66
-1.03
-0.98
-1.31
-2.12
-2.05
0.58
-0.37
-0.02
0.34

-0.60
-1.93
-0.96
-0.65
-0.36
-3.29*
-1.70
-1.82
-1.50
-1.09
-2.30
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m - 3.1 std, m, m + 3.1 std -1.49 -1.89 -1.44 -1.45-1.11 -1.42 -1.43 -1.18 -1.03 -1.20
m - 2.9 std, m, m + 2.9 std -1.26 -1.29 -1.16 -1.10-1.12 -1.21 -1.15 -1.23 -1.47 -1.76
m-1mm, m m+1mm 1.03 0.30 0.06 0.24 1.73 80.3 -0.53 -1.19 -0.75 -0.61
m -10 mm, m, m + 10 mm 1.20 0.98 0.30 1.56 1.39 980. 0.74 0.15 1.08 0.57
m-15 mm, m, m + 15 mm -2.07 -1.73 1.43 0.14 0.59 1.34 1.21 1.20 1.02 0.92
m -20 mm, m, m + 20 mm 0.87 -0.23 0.01 -1.07 -0.58-0.42 -0.75 -2.00 -1.75 -1.61
m-25 mm, m, m+ 25 mm 1.49 1.60 1.41 0.49 1.15 970. 111 1.10 0.88 -0.38
m - 22 mm, m, m+ 22 mm 1.06 1.53 0.30 0.58 0.89 115 0.88 0.67 1.09 1.44
m - 30 mm, m, m + 30 mm -0.45 -0.46 -0.50 -0.66 620. -0.40 1.19 0.40 1.04 1.03
m -35 mm, m, m+ 35 mm 0.93 0.79 0.82 0.95 1.05 520 -0.62 -1.55 -0.29 -0.33
m - 40 mm, m, m + 40 mm 1.18 1.80 1.14 0.69 059 141. 1.03 0.70 0.97 0.86
m - 2 std, m, m + 3 std (A) 1.30 -0.31 -0.52 -0.59 0.43 0.42 0.41 0.45 0.45 0.47
m - 1std, m, m + 3 std (A) 0.69 1.22 1.08 0.90 1.07 1.00 0.98 1.06 1.39 -0.12
m - 3 std, m, m + 2 std (A) 0.79 0.70 0.32 0.86 71.3 1.82 1.37 0.95 0.71 1.24
m - 3 std, m, m + 1 std (A) 0.74 0.74 0.69 0.72 20.7 0.73 0.93 0.43 0.81 0.77

Note: t-scores with magnitude equal or larger than 3.04 are indicated with * and aik Fhiedim” indicates mean value for the time series,
“std” indicates the standard deviation for the time series, and “mm” indiceileaetres of movement in the CO@) indicates asymmetric

thresholds were used
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Table 3.3. Approximate entropy t-scores for compasgon of medial-lateral postural sway
t-scores for comparison of medial-lateral postural sway of infants vgpitatydevelopment and with delayed development, based on

approximate entropy calculated with various lag and r values, -3.32 is the ragggstude t-score.

r value used in ApEn calculation

m lag 0.05*std 0.1*std 0.2*std 0.4*std 0.8*std 1.5*std 2.5*std 3*std 3.5*std 4*std 5*std

2 1 -0.94 -055 -046 -047 -056 -0.67 -0.20 -0.26 -1.14 -2.12 -0.76
4 1 058 -108 -122 -120 -137 -167 -162 -140 -2.26 -3.17* -2.04
8 1 1.05 -0.14 -063 -169 -192 -240 -252 -254 -2.88 -3.27* -2.69
2 4 -1.26 -1.41 -194 -246 -2.72 -2.68 -3.09 -3.32* -3.27* -3.17* -2.04
4 4 1.23 -0.17 -155 -241 -284 -2.81 -3.07 -3.24* -3.20r -3.10* -1.67
8 4 1.34 0.33 016 -239 -264 -264 -249 -293 -3.16* -3.13* -1.32
2 8 -1.32 -150 -218 -272 -282 -2.71 -3.02 -3.16* -3.08 -2.90 -1.54
4 8 164 046 -151 -268 -260 -247 -245 -2.86 -3.03 -291 -1.15
8 8 1.35 0.50 129 -196 -291 -206 -196 -220 -249 -2.83 -1.73

Note: t-scores with magnitude equal or larger than 3.04 are indicated with * and ai in bol
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Table 3.4. Approximate entropy t- scores for compason of anterior-posterior postural sway

t- scores for comparison of anterior-posterior postural sway of infants witbakyl@velopment and with delayed development, based

on approximate entropy calculated with various m, lag and r values, ave@llthan 3.04.

r value used in ApEn calculation

lag 0.05*std 0.1*std 0.2*std 0.4*std 0.8*std 1.5*std 2.5*std 3*std 3.5*std 4*std 5*std
1 0.83 0.82 0.84  0.99 0.99 1.03 092 1.46 1.14 0.54 0.69
0.50 0.17 025 060 0.61 0.73 0.36 0.87 0.59 0.28 0.12
-1.04 0.68 0.41 028 024 040 -0.19 0.53 0.30 0.22 0.17
061 060 046 016 0.02 040 -0.30 041 0.23 0.24 0.04
115 105 084 048 0.17 0.17 -0.38 0.39 0.24 0.31 0.20
-0.80 0.55 1.03 1.01 0.39 049 -048 044 0.12 036 0.46
1.27 1.01 090 036 010 0212 -0.33 0.39 0.25 0.35 0.17
0.15 1.26 1.09 090 036 054 -042 0.32 0.18 0.42 0.39
-1.04 -0.49 0.90 1.47 085 034 -0.05 0.21 0.20 0.34 0.43

o h~hNOPANODMDNIS

oo~ bhPEPR

Note: No t-scores with magnitude equal or larger than 3.04 are in this table.
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CHAPTER 4
DEVELOPMENTAL DELAY AND TYPICAL DEVELOPMENT
INVESTIGATED USING APPROXIMATE ENTROPY AND SPECTRAL

ANALYSIS OF INFANT SITTING POSTURAL SWAY

Abstract: We have applied approximate entropy to infant sitting postural sway
center of pressure (COP) data, with the goal of distinguishing betweeostiuegh sway
dynamics of infants with typical development, and infants with delayed motor
development, where the delayed development is due to cerebral palsy for roany of
subjects. By trying to find approximate entropy parameters that actiedfen separating
these populations, we hope to find a measure that will be able to quantify improvements
that occur in motor control due to physical therapy. In order to assess the tingpact
experimental noise has on the analysis, we included a periodic single pendulum and a
chaotic double pendulum in the analysis, however comparison of the single and double
pendulum COP data was not very sensitive to the parameters used in the approximate
entropy analysis, due to the very different dynamics of the periodic singlelpen and
chaotic double pendulum. We find that best approximate entropy parameters for the
infant sitting data set are ApEn(m=1, r=1*std(Data), t=8.33sec@?240Hz, lag=&), and
significant difference is seen in the anterior-posterior axis, but not in thalregdral
axis with these parameters. The analysis is not very sensitive to the melatiieds but
is sensitive to the values of r and lag. Use of the full time series, 8.33 sec at 24@ Hz, wa
the best value of N we obtained for the data, but we cannot rule out that longer time

series could have improved the analysis. The choice of lag value of 8 to 12 in the
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approximate entropy analysis corresponded to a time lag of 33 to 50 msec, or rclyeque
of 20 to 30 Hz. Spectral analysis confirmed features in the postural sway ofittiady s

of infants with typical development in this frequency range. The high frequenoysa t
features suggests a stretch reflex or tissue vibration may be active, peotinggied by a
near-fall. Voluntary movements, medium and long latency reflexes are ngt.as fa
Suggestions for implementation of the approximate entropy algorithm to exp&ime

data are discussed.

Introduction

Cerebral palsy occurs because of brain injury sustained very earky, iaitiier
before, during, or shortly after birth, and is characterized by motor dysfunction.
Identifying affected infants when they are very young allows foripalytherapy to be
started early when brain plasticity is maximal, with the goal of improviadong-term
outcome for these infants (Blauw-Hospers, Hadders-Algra, 2005; Blauw-Hospers, de
Graaf-Peters, Dirks, Bos, Hadders-Algra, 2007; de Graaf-Peters, Blagpers, Dirks,
Bakker, Bos, & Hadders-Algra, 2007). Sitting is a motor skill acquired earliein li
typically at about age 4-9 months, and thus can serve as a window into the development
of motor skills in very young infants (Harbourne & Stergiou, 2003). Studyinggpitti
dynamics affords the possibility of objectively quantifying motor coordinah order to
identify infants who might benefit from physical therapy, and to assess improtzease
therapy progresses, even in infants who cannot yet stand. Lack of genenadenbve
complexity in young infants may be a useful indicator of cerebral palsy and tha

therapeutic intervention is appropriate (Hadders-Algra, 2004), but it is noegethow
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best to objectively quantify movement complexity. To explore the dynamicgingsit
postural sway in infant sitting, a measure of time series dynamics isonibatliés

sensitive to differences between affected and unaffected infants, andisvioblst to
experimental noise, and also robust to shorter time series segments sincefamsy

can not sit for extended periods of time. The long term goal of this work is to develop a
measure that can assess developmental delay early in life, is semsitigh ¢hat it can

be used to monitor the effectiveness of a course of therapy, and is robust enough to real-
world data limitations such as noise and limited time for analysis, that @ sonleday

be applied in a clinical setting.

Approximate entropy was developed by Pincus (1991) as a measure of
“complexity” for time series data, where “complexity” is defined aadpéow for time
series with a repetitive pattern such as a sine function, high for a random vaable
intermediate for systems with chaotic dynamics. Alternatively, it cateberibed as a
measure of “regularity” where time series data with repeateerpathas low
approximate entropy and high regularity (Pincus & Goldberger, 1994), i.e. appt®xima
entropy is a measure of lack of regularity. Because approximate ergregysitive to
the system dynamics, it is a potentially useful measure for a wide ranggdadfal
conditions that alter physiological or motor control dynamics. There rauenaer of
medical fields where the use of approximate entropy has been investigakedinig
cardiology (Pincus & Goldberger, 1994; Kaplan, Furman, Pincus, Ryan, Lipsitz &
Goldberger, 1991), endocrinology (Liu, Iranmanesh, Keenan, Pincus, and Veldhuis,
2007; Veldhuis, Keenan, & Pincus, 2008), anesthesiology (Kumar, Anand, Chari,

Yaddanapudi, & Srivastava, 2007), traumatic brain injury (Cavanaugh, Guskiewicz,
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Giuliani, Marshall, Mercer, & Stergiou, 2005, Cavanaugh, Guskiewicz, Giuliani,
Marshall, Mercer, & Stergiou, 2006), Parkinson’s disease (Morrison, Kerr, IN&wve
Silburn, 2008), and orthopedics (Georgoulis, Moraiti, Ristanis, Stergiou, 2006). Both the
loss of complexity hypothesis (Goldberger, Peng, & Lipsitz, 2002) and the optimal
movement variability hypothesis (Stergiou, Harbourne, & Cavanaugh, 2006) suggest that
approximate entropy of time series data from physiological systembgendinically

useful, as pathology can shift the regularity of system dynamics araytlie optimal
values. A measure like approximate entropy, with the ability to quantify regué

system dynamics, may someday be used clinically to discriminatallypileveloping
children from those with pathology, help assess severity of pathology, @&sd afftcacy

of treatment.

Despite the wide range of research applications of approximate entropy, the
methodology of application of the approximate entropy algorithm to experimetdal da
has yet to be fully optimized for widespread clinical implementation. Expetatly
measured time series data is necessarily of limited length, and oftenaivags,
corrupted by experimental noise of unknown dynanttgperimental noise is often
assumed to be white noise, or independent and identically distributed error, allowing fo
statistical treatment based on these assumptions. The reality is thabtheensent
noise is generated by physical processes that have certain dynasuaatad with them,
which may lead to noise dynamics being something other than the statiedadf
white noise. For example, time series data acquired at high enough frequkkonéygn
have a 60 Hz noise component due to electrical power distribution using 60 Hz frequency

(or 50 Hz in Europe). The 60 Hz noise is certainly not well represented as white noise.
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The dynamics of the noise may not be important if the measure used on the time serie
data is range or standard deviation, but in using measures of the dynamicsnoé the t
series, including approximate entropy, the dynamics of the noise may inteittetae
measurement of the dynamics of the system under study. One way the inmpase of

can be studied is to add in computer generated white noise to time series data, and
investigate the impact that the added white noise has on the approximate entropy
analysis. However, this method leaves open the possibility that real expeatinase,
which is not pure white noise, may have a different effect on the analysis.

Another approach to understanding the impact of experimental noise on measures
of system dynamics is to use a model system that has known dynamics, anbesee if
dynamical analysis gives a result in reasonable agreement with the knoamidy. For
example, a mechanical single pendulum has limit cycle dynamics, and thus would be
expected to have a low value for the approximate entropy. Higher values of aggieoxi
entropy from experimental measurements of the dynamics of a singkalyparare likely
a result of contamination of the measured signal with experimental noise evigh m
complex dynamics. Data acquired from the single pendulum with the sa®enesntal
equipment as the infant sitting data would be contaminated with noise having the same
dynamics as noise contaminating the infant sitting data. Thus it is possiblecto se
analysis parameters for the approximate entropy analysis using pendudutinad at
minimize the impact of experimental noise on the analysis. A double pendulum is a
pendulum with two linked segments that are each free to rotate, givingemsygh
enough degrees of freedom to display chaotic dynamics (Shinbrot, Grebogi, W&dom

Yorke, 1992). If the experimental limitations of the data are minor enough to no¢iaterf
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with the analysis, then approximate entropy should be able to distinguish betwaeen da
from these two mechanical systems. Thus mechanical pendulums can act as model
systems to investigate the effect of the experimental noise on the analygssem
dynamics.

The approximate entropy algorithm has been described in detail elsewhere
(Pincus, 1991; Pincus & Goldberger, 1994). As implemented (Kaplan & Staffin, 1996),
the algorithm creates vectors of length m, and length m+1. It then counts wé¢iors
series data of length m that are similar to each of the vectors of length rearabtints
how many of those similar m length vectors are also similar at length Approximate
entropy is then calculated as the logarithm of the sum of the count of similagtim len
vectors minus the logarithm of the sum of the count of similar m+1 length vectors,
normalized by N, the number of data points. The difference between logarithiins ca
rewritten as the logarithm of the ratio of the count of similar vectors offlenglivided
by the count of similar vectors of length m+1. Thus repeated patterns in thipveatse
to lower approximate entropy values, because two vectors similar at fervgthalso be
similar at length m+1 due to the repeating pattern, resulting in a ratid néarlog of
which is then near zero. For this reason, time series with repeated patterns have
approximate entropy near zero.

An important aspect of the approximate entropy calculation is determining how
similar vectors are defined. The approximate entropy algorithm usesragtara to
define similar vectors. If each point in a vector is within a distance r @fotinesponding
point in the other vector, then the two vectors are counted as similar. If r isgep la

vectors are counted as being similar when they are not; if r is too small, thers vkat
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should be considered as similar are not counted as being similar. The tirnelatxiwill
have some measurement error, as is typical of experimentally derigedud the r
parameter allows for two vectors to be counted as similar, even if the expdlimase
results in the values not being identical. A value for “R” is selected ftneatime series
in the analysis, and this value is multiplied times the standard deviation of each
individual time series data in order to define the r for that time ser€S;std(Datg) for
each time series i. While a range of 0.1 to 0.25 for R is suggested in early wots(&
Goldberger, 1994), recent work suggests that R be set at 0.2 for biological applications;
i.e. 1=0.2*std(Datg (Veldhuis, Keenan, & Pincus, 2008). While the r parameter may
serve to filter experimental noise, it also filters the biological sjgmal thus serves to
select the length scale of the system dynamics that is being probed ppiiraraate
entropy analysis. It is not clear whether the most important function optrameter is
simply to reduce the sensitivity of the analysis to experimental noise, biag & more
important function relevant to the length scale of the dynamics of biologitahsys

If the function of the r value is simply to reduce the sensitivity of the anatysis
experimental noise, then basing the r value on the ngig&std(Nois¢), might be
preferred. Pincus and Goldberger (1994) suggest that r must be chosen to be larger tha
the noise, but fail to give exact guidelines other than to suggest a value of threth¢imes
estimated mean noise has work well in their clinical studies. Thus one might évgtect t
selecting the r value based on some estimation of the noise in the data mightfbke a use
approach. Alternatively, other authors have suggested that r should be selected to
maximize the entropy result (Castiglioni & Di Rienzo, 2008; Lu, Chen, Kanters,

Soloman, & Chon, 2008). Both of these possibilities were investigated in this work.
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Understanding the impact of experimental noise (i.e. measurement erroniitsises
often difficult, since the actual signal and noise are not known a priori. One method to
address this is to use the measurement technique on a known system, i.e. on a model
system with know dynamics. Because we are making mechanical measuremiets
infant postural sway, we used mechanical systems with known dynamics teetest t
analysis. Two such mechanical systems were used, 1) the single pendulum, which
exhibits simple limit-cycle dynamics, and 2) the double pendulum, which exHilaitgic
dynamics when launched from appropriate initial conditions.

The purpose of this work is to examine the impact of the parameters in the
approximate entropy analysis to better understand dynamics of infarg pibstural
sway, and we utilized COP data from single and double pendulums, in order to guide us
in analysis of the infant sitting data. The long-term goal of the work is to discove
differences between postural sway of infants with typical development amdsinfith
delayed development that might be useful in a clinical setting to help assessaals in
infants motor control skills due to pathologies such as cerebral palsy, and to assess

progress due to various therapeutic interventions.

2. Methods

2.1. Infant Participants

Thirty infants with 30 developmental delay (age=14.05 months, std=5.33 months,
for early sitting and age=18.06 months, std=5.09 months, for advanced sitting) and 33
infants with typical development (age=4.92 months, std=0.57 months, for early sitting,

and age = 7.92 months, std=0.60 months, for advanced sitting) participated in the study.
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Recruitment was done through newsletters, flyers, and pediatric physcabists
employed at the University. Infants in the developmentally delayed growpdmegmnosed
with cerebral palsy, or else were developmentally delayed and at riskrédral palsy.
Obtaining a firm diagnosis of cerebral palsy at this young age is often ndil@oss
Because a definitive diagnosis of cerebral palsy had not been made, we refex to thes
infants as developmentally delayed, because all scored below 1.5 standardrdeviati
below the mean for their corrected age on the Peabody Gross Motor Scale (Folio &
Fewell, 2000). However, the development is likely not just delayed, but also atypical
(Chen & Wollacott, 2007). A consent form was signed by a parent or guardian of all
infant participants, and all procedures were approved by the University of kkebras
Medical Center Institutional Review Board.

Inclusion criteria for entry into the study for the typically developifgnts were:
a score on the Peabody Gross Motor Scale of greater than 0.5 SD below the mefan, age o
five months at the time of initial data collection, and sitting skills as degdoélew in
beginning sitting. Exclusion criteria for the sample of infants who aredlypi
developing were: a score on the Peabody Gross Motor Scales less than 0.5 SD below the
mean, diagnosed visual deficits, or diagnosed musculoskeletal problems. liadlytypic
developing infant was found to be less than 0.5 SD below the mean, and did not qualify
for the study, the parents were informed of the score, the possibility of error in the
measurement, and advised to have the infant re-evaluated within the next 3 months.
Operational definitions of beginning sitting were used to determine the chadlimess
for entry into the study. Beginning sitting was defined as (a) head controlhsiahhten

trunk is supported at the mid-trunk, head is maintained for over one minute without
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bobbing; (b) infant can track an object across midline without losing head control; (c)
infant may prop hands on floor or legs to lean on arms, but should not be able to reach
and maintain balance in the prop sit position; (d) when supported in sitting can reach for
toy; (e) can prop on elbows in the prone position for at least 30 seconds. Each infant was
tested when they entered into the study based on the ability to sit for about 10 sec, and
then again 3-4 months later.

For the infants with developmental delay the inclusion and exclusion criteria were
as follows. Inclusion criteria were: age from five months to two yearsg $&ss than 1.5
SD below the mean for their corrected age on the Peabody Gross Motor Swhles, a
sitting skills as described above for beginning sitting. Exclusion critera:vage over
two years, a score greater than 1.5 SD below the mean for their corrected age on the
Peabody Gross Motor Scale, a diagnosed visual impairment, or a diagnosed hip
dislocation or subluxation greater than 50%.

Note that “early” and “advanced” sitting are labels indicating that thegivas
either close to the time the infant was able to achieve about 10 seconds of ugnght si
(early), or the sitting behavior that was displayed 3-4 months later (adyakoe the
infants with typical development, the advanced sitting was also well contritiad.s
For the infants with developmental delay, the sitting behavior studied as advatuegd sit
was not necessarily well controlled sitting behavior, especially in infambswere more
severely affected. The comparison between “early” and “advanced” should bstooder
as advancement in behavior with time, and not that the skill level had improved equally
between the two groups. Thus the change in the measures of posture control might be

expected to change less for the infants with delayed development than for tlose wit
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typical development.

2.2. Pendulums

Two pendulums were used in the study (Figure 4.1). The first was a single
pendulum, constructed from steel bar (1" x .125” x 3’) and mounted to swing freely on a
rigid structure, using Bones Reds 608 Precision Skate Bearings (BonagyBeSeanta
Barbara, CA) to reduce friction as the pendulum swings. The pendulum arm length was
selected to give the pendulunfraquency of approximately 0.7 Hz, because maximum
power in the power spectra of the infant sitting was of a similar frequencgh¥evere
clamped on the pendulum arm to simulate the weight of an infant. Amplitude of the
pendulum swing was varied from trial to trial. The second pendulum was a double
pendulum, purchased commercially (http://www.chaoticpendulums.com), and could be
mounted on the same mounting structure as the single pendulum. The double pendulum
also had metal bearings to reduce friction.

2.3. Data Collections

Data collections for both infants and pendulums were performed with the same
equipment, using all the same data acquisition parameters. For data acq(Hsifure
4.1), a pendulum or infant was placed on an AMTI force plate (Watertown, MA),
interfaced to a computer system running Vicon data acquisition softwde fosest,
CA). Markers can be seen on the infant in Figure 4.1, and kinematic data was also
collected, but is not discussed in this paper. The time series data collectggnote
pressure (COP) data, which is the position of the resultant vector wheresgatsethe

surface of the force plate. Thus the time series data is position data, althsuigriied
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from the forces measured by the force plate. The COP time seriesogened through
the Vicon software at 240 Hz, in order to have a sampling frequency 10 times above the
highest frequency found the time series from in a pilot study.

For all data collection sessions, the infants were allowed time to get used to the
laboratory setting, and were at their parent's side or on their lap for preparad data
collection. Infants were provided with a standard set of infant toys for distrand
comfort. All attempts were made to maintain a calm, alert state byiadjdte infant to
eat if hungry, be held by a parent for comforting, or adapting the tempevatheeroom
to the infant's comfort level. Testing was only proceeded when the infant waaln a
and relaxed state, not crying or otherwise making extended vocalization. Aotlofivels
placed over the plate for warmth and was securely adhered with tape on the fexce plat
The investigator and the parent remained at one side and in front of the infant
respectively during all data collection, to assure the infant did not fall omieeicgecure.
The child was held at the trunk for support, and gradually the infant was guided into a
prop sitting position while being distracted by toys presented by the pareetti@nc
examiner could completely let go of the infant, data were collected for 10 secotals whi
the child attempted to maintain sitting postural control. Trials were pegtbumtil we
had collected three trials that are acceptable for our criteria, othatitffant was
indicating that they were done. At any time the child became irritated; shi®savas
halted for comforting by the parent or a chance for feeding, and then resumeadenly
the child was again in a calm state. In some cases, if the infant wag foryanlong
period of time, then data was not collected at that session. Infants cameatotilieé

within a single week, and we attempted to get three trials in each of thedsiors.
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Segments of usable (described below) data were analyzed using custom MatLab
software (MathWorks, Nantick, MA). No filtering was performed on the data in twder
not alter the nonlinear results (Rapp, Albano, Schmah, & Farwell, 1993). Trials were
recorded including force plate data and video data from the back and side views.
Afterwards segments were selected by viewing the corresponding videcer@sgrh
data with 2000 time steps (8.3 seconds at 240 Hz) were selected from thebg trials
examination of the video. Acceptable segments were required to have no crying or long
vocalization, no extraneous items (e.g. toys) on the force platform, neitreessibtant
nor the mother were touching the infant, the infant was not engaged in rhythmic behavior
(e.g. flapping arms), and the infant had to be sitting and could not be in the process of
falling.

For the single pendulum, long time series could be collected (limited by the
storage capacity of the computer), and then these were divided into 2000 time step
segments (i.e. N=2001) to match the infant sitting data. Segments matchinigtte i
sitting based on signal-to-noise (discussed below) were selected limisrfeor the data
collection with the double pendulum, to ensure initial conditions that would lead to
chaotic motion, the double pendulum was restarted before each data collectiorstThe fir
8.3 seconds of data (2000 time steps, N=2001) were selected for analysis.

2.4. Data Analysis

Signal-to-noise: During the course of data analysis, it became apgeesdme
time series had better signal-to-noise than other time series, and thatsthiSegtng
the approximate entropy analysis. For the single pendulum, the equation of motion can be

solved using the small angle approximation, resulting in a sin function for theoadluti
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the equation of motion. As expected, the COP data obtained from the single pendulum
appeared to be a sine function for small amplitudes of displacement, but appeanesl to h
a noise component in addition to the expected sine wave. Based on this observation, a
method was developed to estimate the signal-to-noise for our time seaedidae

“signal” refers to the true data if no experimental noise were presdrd tmte series

data. Signal-to-noise is defined as the ratio of the variances of the signaliae
(Manolakis, Ingle, & Kogon, 2005); signal-to-noise&ss’, where gindicates the

standard deviation calculated from the smoothed time series (estimated sigaal)s

the standard deviation of the difference between the unsmoothed time series and
smoothed time series (estimated noise).

Because we wanted to estimate the signal-to-noise in both periodic data and
chaotic data, we used a sine function and a numerical solution to the Lorenz attractor
each with different levels of added random noise, as test pseudo-data sets, where
“pseudo-" indicates data was generated in MatLab, not acquired with thefateeBy
generating pseudo-signal and pseudo-noise separately before adding thake t
pseudo-data, time series pseudo-data were generated with known signak{o-noi
allowing the result of the signal-to-noise detection algorithm to be \aeriampling
rate, spectral frequencies, and apparent signal-to-noise of the pseud@icatiosen to
be similar to the infant sitting data. An estimate of the signal in each ps#éuelo-data
sets was made by smoothing the noisy data, and then the noise was estimated by the
difference of the pseudo-data and the estimated signal. Two smoothing methods were
used, Savisky-Golay polynomial smooth and a low-pass Butterworth filter smooth. |

was felt that the critical measure of signal-to-noise was at pooil-$ggnaise conditions,

www.manaraa.com



85

so the parameters for the Savisky-Golay (polynomial order and window s@z&rahe
low-pass filter (filter order and cut-off frequency), were optimized faicmag the
measured signal-to-noise with the actual signal-to-noise for the psewadat gatorer
signal-to-noise levels. Then, comparing the measured with actual sygnaise at better
signal to noise values, the Savistsky-Golay method was found to be better, so hiodt met
was adopted as the standard method, using the parameters of a polynomial oetel = 8,
window size = 121 (0.5 sec). The double pendulum has much higher signal-to-noise than
the other data types, and these parameters for estimation of signalealidam®t appear

to work for the double pendulum data. Application of this method to single pendulum
data and infant sitting data appeared to give reasonable results @&Rjuiend the result
from the single pendulum is especially encouraging because the solution to tienequa
of motion is expected to be a sine function, and the estimated signal, i.e. the smoothed
data, closely resembles a sine function.

Approximate entropy: The approximate entropy calculation was described in the
introduction, and Pincus (1991) and Pincus and Goldberger (1994) are good resources for
additional discussion of the method. The MatLab code used to calculate approximate
entropy was accessed online (Kaplan & Staffin, 1996). Approximate entropy/ and al
other calculations for this work, were done using MatLab (version R2007a).

Spectral analysis: Periodograms were calculated using MatLabrt@tsthe
power spectrum for each trial using a Hann window function. Periodograms were
averaged for all trials in each of 4 categories, 2 subject types (infantsypical or
delayed development), at 2 sitting ages (early or advanced sitting). Sharp peaks we

observed at 30 Hz, 60 Hz, and 90 Hz, the largest of which was at 60 Hz, and were
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thought to be related to power transmission at 60 Hz, and not features of the infent sitt
postural sway.

Statistical analysis: A statistic of interest in this analysiseseffect size in
comparing two populations. Many estimators of effect size assume a nodistilyuted
data, but the approximate entropy values in this study were observed to have a non-
symmetric distribution, and the distribution was skewed to high side. Thus we used the
nonparametric Wilcoxon rank sum test (Mann-Whitney U test) to perform cmopsar
This has the advantage of being easy to calculate using MatLab, and allowed sompari
of the p value obtained to a critical p value to assess if the approximate enttysysan
were likely significant (p<giical), Or if the difference in approximate entropy values were
likely not significant (p>giica). We also performed a paired t-test, again using the built-
in MatLab function.

The reported p values are for three different comparisons: 1) comparisons of the
n=30 infants with developmental delay compared with the n=33 infants with typical
development, for approximate entropy analysis of postural sway in the aipesterior
(front-to-back) axis, 2) comparisons of the n=30 infants with developmental delay
compared with the n=33 infants with typical development, for approximate entropy
analysis of postural sway in the medial-lateral (side-to-side) amd 3) comparisons of
n=100 trials of single pendulum with n=100 trials of double pendulum. For comparisons
1 and 2 (infant sitting) up to 3 trials for each infant were averaged (somehieniagant
was crying, and fewer than 3 trials were collected). Hundreds of compansye made
using different parameters for the approximate entropy calculation, but teasat a

independent comparisons, e.g. the ApEn (m=2, r=1, N=2001) are correlated with ApEn

www.manaraa.com



87

(m=2, r=1, N=1001). Thus in correcting our significance level for multiple conqpes;is

we used a Bonferroni type correction considering three independent comparisans (infa
sitting anterior-posterior axis, infant sitting medial-laterabaand pendulum

comparisons), and set the significance level at alpha=0.05/3=0.017. Repeatedsmeasure
ANOVA analysis, comparing sitting postural sway for infants with @paevelopment

and delayed development, for early sitting and advanced sitting was performed using

SPSS Statistics (GradPack 17.0).

Results

Typical parameters used in many studies for calculating approximadgeate
m=2, r=.2* std(data), and lag=1, so we used these parameters as our starting point. To
see the effect of noise on the approximate entropy result, we examinedtibaskia
between approximate entropy using standard parameters ApEn( m=2, r=.2&td(da
N=8.33 sec acquired at 240 Hz, lag=1), and estimated signal-to-noise (F8)uend.
found that approximate entropy is systematically higher for poor sigmadise for
single pendulum data, as well as infant sitting in both anterior-postenat-{b-back)
and medial-lateral (side-to-side) directions. Compensating for the effpobr signal-to-
noise is critical, because most of the variability in the approximate engajye to
signal-to-noise.

Looking at the approximate entropy as a function of lag in data from the single
pendulum (Figure 4.4), we found that for time series with poor signal-to-noise, the
approximate entropy varies considerably with lag, but that for the tines s4@th the

best signal-to-noise, lag is not as important. We expect the approximate éotrapy
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single pendulum to be near zero, due to the limit cycle dynamics of the single pendulum.
The lowest approximate entropy value for the poor signal-to-noise tines g&xs at

lag=4. Spectral analysis of the time series data finds a small peak at &0dHz,en

smaller peaks at 30 Hz and 90 Hz, presumably contamination from the 60 Hz frequency
used for power delivery. Our data was acquired at 240 Hz, so the 60 Hz noise repeats
every 4 data points in our data, explaining the utility of using lag=4 in the approximate
entropy calculation. Alternatively, down-sampling the data to 60 Hz would be another
way to reduce the impact of 60 Hz noise contamination on the approximate entropy
result, so we included this in our subsequent data analysis.

Proper selection of the r parameter would be expected to improve the performance
of the algorithm on data contaminated by experimental noise, since this paramete
thought to act as a filter parameter (Pincus, 1991; Pincus & Goldberger, 1994).
Conceptually, if the r parameter is larger than the experimental noise, theffetief
the experimental noise on the analysis should be reduced. Thus we investigated the
performance of the approximate entropy algorithm as a function of the r parame
Typically, r is defined for each time series as some multiple of the sthdeaiation of
the time series data=R*std(datg, where R is constant for a given analysis, but r varies
for each time series i in the analysis because the standard deviation of easéria® is
different. Some authors have suggested that the best choice for the r paisatoetelect
one that maximizes the entropy calculated (Castiglioni & Di Rienzo, 2008; Lu, Chen,
Kanters, Solomon, and Chon, 2008). Using r=R*std(data) for each time series, and
varying R, we found that infant sitting and single pendulum data have maximum entropy

with lowest values of r (Figure 4.5). For these data, there is no maximum in enttbpy
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changes in R, so that selecting R based on maximizing the time series isie fd4he
maximum in entropy for the double pendulum data down-sampled to 60 Hz, lag=1,
occurs at R=0.25 (Lower left plot) and at R=0.15 for the 240 Hz data, lag=4. Perhaps the
reason that the double pendulum has a maximum other than at the lowest R value is
because the double pendulum data had better signal-to-noise than the infardeg#ting

and better than the single pendulum data, since trials of single pendulum data were
chosen to match the infant sitting data in signal-to-noise. If maximizingthepg were

the best criteria, then the standard selection of R=0.2 appears to be nearfoptinmsl

better signal-to-noise data of the double pendulum.

However, the goal of the approximate entropy analysis on the infant postural
sway data is to distinguish between infants with delayed motor development and the
infants with typical development, with the notion that pathologic development could lead
to more regularity in postural sway (Goldberger, Peng, & Lipsitz, 2002; Stergiou,
Harbourne, & Cavanaugh, 2006). The corresponding goal of the pendulum analysis is to
take a system with known high regularity (the single pendulum), and a system with
known chaotic behavior (the double pendulum), and see how well the approximate
entropy algorithm can be tuned to distinguish between these two systems. Thus the
measure of interest is a measure of comparison between two groups, and wethave us
the p value from a Wilcoxon rank sum comparison. To investigate the effect of the r
parameter on the analysis, three types of comparisons were made: 1)ititnfgnt s
anterior-posterior postural sway (delayed development versus typical devethdne
infant sitting medial-lateral postural sway (delayed development vefsicalt

development), and 3) pendulum reaction forces (single versus double pendulums). These
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3 comparisons were repeated for various R values in the approximate entropyicalcula
and for the data sampled at 240 Hz using lag=1, data sampled at 240 Hz using lag=4, and
the 240 Hz down-sampled to 60 Hz using lag=1 (Figure 4.6a). The comparison of single
and double pendulum data showed that the dynamics are significantly different between
these two systems, and that for the pendulum comparison, the difference isadtatist
significant for a wide range of parameters. For the comparisons of irifarg postural

sway data, choice of analysis parameters was more critical, withtthaaired at 240

Hz and analyzed at lag=1 (Black symbols in Figure 4.6 and 4.6b), no value of R was
successful in producing a significant p value for the comparisons of infanty/piithlt
development and infants with delayed development. For the infant sitting postuyal swa
comparisons, no comparisons in the medial-lateral axis (squares) wereamgnfor the
postural sway in the anterior-posterior axis (circles), and for the tines skata down-
sampled to 60 Hz (white symbols) and for the 240 Hz data analyzed using lag=4 (grey
symbols), the comparison was statistically significant, with minimum p vaiués

range R=1 to R=1.5.

Since it has been suggested that the function of the r parameter is to act as a nois
filter (Pincus, 1991; Pincus & Goldberger, 1994), and since we have an estimate of the
noise for each time series in our analysis, we investigated the use of the noiatedst
calculate the r parameter for each analysis. In this analysisstd(Noise), where
Noiseg is the estimated noise time series based on subtracting the Savitsky#3oléhe
data, as described in “signal-to-noise” methods section. Comparisons were aggin ma
using the infant sitting postural sway data (Figure 4.6c), but even thought theaasu

be considered significant for the anterior-posterior sway (circleshéa240 Hz data
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using lag=4 analysis, the p values obtained were an order of magnitude higher than for
the analysis based ogR*std(Datg). Thus even though one function of the r parameter
is to act as filter parameter and reduce the sensitivity of the analygiseioneental
noise, basing the value of the r parameter on the estimated experimental norsa does
work as well as basing the r parameter on the standard deviation of the tenelata.
This result shows the importance of the r parameter as length scaledpstinmm
dynamics, not merely a filter for experimental noise. Based on these resultave
chosen to useaR*std(Datg where R=1, for the rest of our analyses.

While the r parameter is related to the y axis of the time series (adgpbf
data), several parameters affect the approximate entropy analisesx axis (time axis
of data). The length of data acquisition, sampling rate, and length of the camparis
vectors (m parameter) all potentially interact to affect the resulteddnalysis. The data
were all acquired at 240 Hz, but down-sampling the data allows emulation of data
acquired at high frequencies. For example, by creating a time seriegusiggenth
data point in the 240 Hz time series, a time series with the effective samgiéngf 24
Hz is created. Comparing sitting postural sway in the anterior-postersoofaxifants
with typical versus delayed development, and single and double pendulums, a plot of
Wilcoxon rank-sum p value versus effective sampling frequency was madevédues
of 1, 2, 3, and 4 (Figure 4.7a). The comparison of single and double pendulums resulted
in statistically significant differences regardless of the samfieguency or m value
used, consistent with the dynamics of these two systems being very diff@renfait
sitting, the minimum in p values occurred at 20-30 Hz (Figure 4.7a and expanded in

Figure 4.7b), for which the time between data points is 33-50 msec. The m=4 data is

www.manaraa.com



92

significant all the way to 120 Hz or .0083 sec, but m=4 means vectors of length 4 and 5
are used. Considering that 4*.0083=33 msec is still in that range of 33-50 msec. Similar
results were obtained by using the lag parameter to generate comparisos weht
different time lengths, with lag = 8 to 12 giving the lowest p values (Figido3, &4nd
having similar p values to those obtained by simply down-sampling the data and using
lag=1 for the analysis (Figure 4.7a and b). In general there is a good canrbé&ttveen
the p values obtained using a lag value to achieve a specific time between data points
the times series, and using down-sampling to achieve that same time lag &8).
However, at the best p-values, there is slight advantage to using the lag method rather
than down-sampling. Repeating this analysis for infant postural sway in thel#ateral
axis did not find any significant differences for infants with typical devakam versus
infants with delayed development.

While the approximate entropy algorithm is considered to be more robust to short
time series than many other methods of nonlinear analysis, length of theriesessk
must be adequate to sample the system dynamics. Thus we investigated shbeening t
time series data to see if we could establish a minimal length requiremnéutufe
studies. To compare time series of different lengths, we calculated ApEsta({Data),
t @ 240 Hz, lag=8), where t@240Hz means N=t*240 and t is the length in time of the
time series used in this analysis. We used the first t seconds of the gndsteter COP
time series data, and then plotted the p value from the Wilcoxon rank sum comparisons.
For the comparison of single and double pendulum, just one second of data was sufficient
to distinguish between the single and double pendulum (Figure 4.9a), again consistent

with the dynamics being very different between the single and double pendulutme For t
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infant sitting, p values were slightly below the p=0.017 level that had been set as the
critical value for determining statistical significance with #telias 3 seconds of time
series data (Figure 4.9a). However, the best p values were with t=8.33 seconds of da
and we did not have longer time series to determine if longer time series would be
beneficial. To determine the effect of time series length on the apprexeamiabpy

values, and on the distribution of approximate entropy values, we also examined those
values as a function of length of the time series (Figures 4.9b and 4.9c, regpedinee
values have leveled off substantially by 8.33 seconds, so major improvements in the
analysis with longer times series seem unlikely, but without actually dnévmger time
series, this result is speculative.

Repeated measures ANOVA analysis was performed on the infant sitting data
using ApEn(m=1, r=std(Data), t=8.33sec@?240Hz, lag=8) with data from the eanky sitt
and developed sitting. In the anterior-posterior axis, the development comparison was
significant (F=15.623, p<.001), the group difference was significant (F=6.908, p=.034),
and the interaction was significant (F=4.723, p=.011). Approximate entropy of anterior-
posterior sitting postural sway decreases significantly with developoreintfdnts with
typical development, while the change with development for infants with delayed
development is not significant (Figure 4.10). The comparisons for postural sway in the
medial-lateral axis were not significant.

The approximate entropy results indicating that down-sampling to 10 to 30 Hz
range allows differences to be seen between postural sway in the areterep axis
suggests that spectral differences in this region should be observed. To invdsigate t

spectral analysis was performed on the same time series data as tk@ragiprentropy
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analyses, and the spectral analysis confirms there are differenbeslid+80 Hz range,
especially in the anterior-posterior axis data (Figure 4.11). The broad tesdarein the
power spectra from early sitting postural sway of infants with typical develoipim the
10-30 Hz region (Figure 4.11 c) are greatly reduced in intensity in the advatticgdosi
these infants (Figure 4.11d), and are not seen in the power spectra of postufebisway
infants with delayed development, for either early (Figure 4.11a) or advangace(F
4.11b) sitting. The 10-30 Hz features are much lower intensity in the medral-ktes
(Figure 4.12). The narrow peak at 30 Hz in these spectra is an artifaad telthhe 60
Hz power, as a larger narrow peak is seen at 60 Hz. Note that the power spectra are
plotted on a semilog axis, so the intensity in these high frequency featureslis sm
compared to the intensity of the lower frequency features.
Discussion

The use of measures of nonlinear dynamics in medicine and physiology research
is appealing because there are pathologies that alter system dy(aohitserger, Peng,
& Lipsitz, 2002; Stergiou, Harbourne & Cavanaugh, 2006), and these measures have the
capability to quantify the changes in dynamics. Approximate entropy wagdedeb
be robust when applied to experimental data, but appropriate choice of parametears used i
the algorithm need to be made. Methods for selection of the r parameter based on
experimental noise and on maximizing the approximate entropy value did not prove to be
useful in our analysis. Use of a single and double pendulum as model systems provided to
be of limited benefit, as the difference in the dynamics between these sysisrsg
large, that the analysis was not sensitive to the choice of parameters used in the

approximate entropy analysis. The analysis of infant postural sway, on théarlledid
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depend on the choice of parameters. The discussion below is in two sections, one on the
implementation of the approximate entropy algorithm, followed by a discussant inf
sitting postural sway.

Discussion of implementation of the approximate entropy algorithm

For comparing systems with vastly different dynamics, such as the singd|
double pendulum, approximate entropy is not terribly sensitive to the choice of analysis
parameters. Statistically significant differences between tiggespendulum, a strictly
periodic system, and the double pendulum, a known chaotic system, were found for a
wide variety of parameters. However, for comparing systems with sidyiteamics, such
as infants with typical development and infants with motor development delay, the
analysis benefits from more careful attention to the parameters used &aour
results, we make some practical recommends for performing approxanietpy
analysis on flow data:

1. The r parameterin the approximate entropy algorithm is designed to
compensate for experimental noise in the measured time series data, aralithars/set
the r parameter as r=0.2 * std(Data), i.e. 0.2 times the standard deviation of the time
series. With our data set, use of the standard parameters ApEn(m=2, r=.2%gtd(0at
240 Hz, lag=1) leads to the erroneous conclusion that there is no significamndfer
between these two groups of infants, and use of ApEn(m=1, r=1.0*std(Data), t @ 240
Hz, lag=8) showed significant differences in infants with delayed verpicaty
development in early sitting in the anterior-posterior axis. In previous wofkef@s,
Harbourne, DeJong, Kyvelidou, Stuberg, & Stergiou, 2009) we found that ApEn(m=2,

r=3.0*std(Data), t @ 240 Hz, lag=4) showed significant differences in infattis wi
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delayed versus typical development in developed sitting in the medial-latistal a
although at the time that study was completed, not all the subjects had complelata the
collections, so only n=22 infants with developmental delay and n=19 infants with typical
development were included in that study. Perhaps because larger swings irl pastyra
are more difficult to control, larger movements are more sensitive to theedifé in
motor control between these populations, so the use of the smaller value of r=
0.2*std(Data) is not appropriate for finding these differences. The r parameta
simply a filter for experimental noise, but also adjusts the analysis tm&é\seto the
magnitude of changes that are characteristic of the dynamics of tmsyst a priori
prediction of the most useful r value is difficult, and we suggest exploring tlo effe
this parameter on the analysis. Using the standard approach of .2*std(Datetrha
the best choice for certain types of data, such as our infant sitting postayadata, but
for systems with large differences in the dynamics, such as the periggle gendulum
and the chaotic double pendulum, the standard choice of r may be appropriate.

2. The sampling frequency and lagire two ways to adjust the time constant to
which the analysis is sensitive. For our analysis, 33-50 milliseconds betwagroutds
had the best sensitivity to differences between the infants with tygcais delayed
development. A lag value of 1 is often used, and this may be a good choice for many data
sets. However, for our postural sway data, the adjustment of the lag pareameter
improve the analysis. Selection of the sampling frequency for spectrasianalwell
understood, and the Nyquest criterion of sampling at twice the rate of the highest
frequency feature in the data is a well known requirement. Sampling at thghehe

Nyquist frequency for spectral analysis helps to give better definition &p#utral
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features, and so oversampling by a factor of 5 to 10 is nhot uncommon. The penalty for
oversampling in spectral analysis is minimal, with extra storage for taeadd an
increase in computational time for the power spectrum being two main disadvantages
However, with inexpensive data storage and the very highly optimized fast Fourier
transform algorithms available, in most situations these are not sighifiisadvantages,
so oversampling is a common practice. Oversampling the time series data for
approximate entropy analysis means that the system does not evolve enough between
data points for the system dynamics to be captured. Under-sampling means that the
system has evolved too much between data points so the functional relationship between
adjacent points is lost, and just as with spectral analysis, under-samplintpleads
incorrect results. Thus there is an optimum sampling rate, and that sampliisg rate i
related to a time scale of the system dynamics. We suggest over samptiatafor
acquisition to be sure fast system dynamics are captured, and then eithesadopling
the data, or use of a lag value >1, in order to put the time between samples at a value that
is appropriate for the system dynamics improves the approximate entropsisanél
analysis time is a limiting factor (e.g. a very large data set), dompisegy the data and
using a lag=1 is almost as good as using the lag to match the frequency of, iaterest
down-sampling the data reduces the time required for the approximate emabysisa

If periodic noise is present, then selection of the lag value based on the repeat of
the periodic noise may be beneficial. For example, we sampled at 240 Hz, and have 60
Hz noise from the power distribution frequency, which means the 60 Hz noise repeats
every 4 data points. Thus selecting a lag value of 4, 8, 12, 16, etc. results in all the points

in the comparison vector being acquired at the same point in the noise cycle, to help
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reduce the impact of the periodic noise on the analysis. Spectral anatybis @ane first
to help determine frequencies at which there are differences between pogubdti
interest, and lag values of interest can be determined. Averaging spectrautonte
trials improves the analysis. Also, spectral analysis will show any penodie that
might be present, and if present, may guide the choice of lag value. For exaurglata
acquired at 240 Hz with 30 Hz and 60 Hz noise, means that lags of 8 or 4 should be
considered (240 Hz/30Hz=8; 240 Hz/60Hz=4) so that all the points in comparison
vectors are acquired at the same phase in the noise contamination.

3. The m parameteris the length of the comparison vectors formed from the
time series data. A comparison vector length of m=2 is commonly used, meaning tha
similar vectors of length 2 are tested to see if they are still siatilangth 3. For more
intricate patterns, longer comparison vectors may be beneficial to incluteanalysis,
but for our analysis, the m value was less critical than some of the otheepamar®ne
reason to choose a smaller m value is that approximate entropy analysisgeitmia
values takes more time to run.

4. The length of the time seriess important to the analysis, but verification that
the length of the time series is appropriate is not as easy as we mighssiaved at the
outset. A commonly used criteria for the length of the time series deapgooximate
entropy analysis is that N, the number of data points in the time series, needsto be N
10", or N>30" if possible (Pincus, 1991; Pincus & Goldberger, 1994). For our choice of
m=1, we in theory would only need 10 to 30 data points. One issue is that N does not
give the complete answer about the necessary length of the time series baoslseg

rate also needs to be considered. For example, with our sampling at 240 Hz, we could
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have met the N> 30criteria with a data collection of 125 msec. However, we found that
at least 3 seconds of data was needed to find significant differences betiaaewith
typical versus delayed development, and that the analysis improved for even loager dat
sets. Thus the length of the time series needs to be set based on sampling the complete
dynamics of the system, and not set based on getting a certain number of dat@pant
way to examine if the time series is long enough is to perform the anatysis
increasingly longer lengths of time series data, and see if incgeths length of the time
series used in the analysis changes the results.

5. Specify the parametersised in the analysis in discussing the results. The
parameters that were selected for calculation of the approximate emtiihyos/ study
were based on maximizing the p value for a rank sum test involving early irtfaugt. si
In this study, we found no significant effect in the data from the medialildiezation,
only in the anterior-posterior direction, based on ApEn(m=1, r=1.0*std(Data), t @ 240
Hz, lag=8), parameters optimized for comparing the early sitting. A shatesimilar
approximate entropy analysis was performed using a subset of this data, but the
parameters were optimized used the data from developed sitting (Deffegasyiia,
DeJong, Kyvelidou, Stuberg, & Stergiou, 2009), which found a significant difference
between ApEn(m=2, r=3*std(Data), t=8.33sec@240Hz, lag=4) sitting posturafeway
infants with developmental delay and infants with typical development, but in the medial
lateral direction and not in the anterior-posterior direction. A third study withses of
this data used nearly standard parameters ApEn(m=2, r=0.2*std(Data),
t=8.33sec@240Hz, lag=4) and found no significant difference between postural sway of

infants with delayed development and infants with typical development (Deffeyes
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Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009). Thus it is not correct to say that the
approximate entropy of one condition/group is different than another condition/group, but
rather the parameters must be specified, i.e. that the ApEn(r,m,t @ Hs,d&tgrent

for the condition/group. Pincus (1991) has described the approximate entropy as a family
of statistics, with members varying by r and m values. We point out that diffaneihy
members may on occasion arrive at different conclusions.

6. A model systentan give an indication that the approximate entropy result is
being predominately influenced by noise. Using a single pendulum model of periodic
motion, noise was found to be the main source of variability in approximate entropy
calculated with the standard parameters. Consider whether the equipment ustd for da
acquisition is suitable for the measurements, as approximate entropysaisadgsisitive

to the dynamics in the noise.

Discussion of the infant sitting postural sway results

An important result from this work is that using a lag value of 8 or 12 in the
approximate entropy analysis gave the best separation of early sitivephanfants
with typical development and infants with delayed development, and that the diéferenc
was only for postural sway in the anterior-posterior direction. ANOVA aisabjthe
ApEn(m=1, r=std(Data), t=8.33sec@240Hz, lag=8) results found a significanttidera
between sitting development and subject group being found only for the anterior-
posterior axis. A lag value of 8 corresponds to a time lag of 33 msec, or a frequ80cy of
Hz; a lag value of 12 corresponds to a time lag of 50 msec, or a frequency of 20 Hz.

Spectral analysis confirmed that there are features in the 20-30 ¢itziratine early
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sitting of infants with typical development that are greatly reduced in ensitiing, and
these features are not seen in either early or developed sitting of infantslayddde
development. These features are apparent in the anterior-posterior data, butenot in t
medial-lateral data. The importance of these 20-30 Hz features is ndtethair¢ the
largest features in the power spectra, but rather that they are more pridioirpostural
sway in the anterior-posterior axis in infants with typical development in gi#trhg, the
same group/condition where the ApEn(m=1, r=std(Data), t=8.33sec@240Hz, lag=8) wa
higher. As discussed in more detail below, our results suggest a contribution &iseim a f
acting (20-30 Hz) mechanism in early (~4.9 months of age) sitting of typfeailts, such
as a stretch reflex. This fast mechanism is greatly reduced in theirgb@stutrol in
advanced (~7.9 months) sitting, presumably because better control from other
mechanisms has become active.

Our sitting postural sway results in typically developing infants fit wél
results reported of infant sitting by Hadders-Algra (2005), as she repdrésge in
postural variability that occurs at about 6 months of age, so that our earlyisittigigre
the transition and the developed sitting is after the transition. The transitiatthas at
6 months of age (Hadders-Algra, 2005) is a transition from “primary variabiity” i
postural activity characterized by high variability and only poorly adapted t
environmental constraints, to a more well-coordinated “secondary varidbilitg
“secondary variability” that emerges in infants at about age 6 months Hakldeas-
(2005) describes as being related to the infants refining the ability to sudgessful
incorporate multiple sensory systems, such as somatosensory, visual, and vestibula

the postural control. In our study, higher frequency postural sway perhaps dutlo stre
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reflex in early sitting corresponds to the more poorly controlled “primatglviaty”
described by Hadders-Algra (2005) (REF). As the ability to incorporate ypee of
sensory information into the postural control improves, the apparent stretch reflex
contribution to postural sway declines and the advanced sitting with the lower
contribution from the apparent stretch reflex corresponds to the “secondatyilitgti
described by Hadders-Algra (2005)(REF).

In the vocabulary of dynamic systems theory, as a control parameter gththrges
attractor changes, resulting in the emergence of a new behavior, sheleasergence of
sitting. While we have not elucidated the control parameter for the transitiofaint
sitting, candidates include neurological maturation, physical growth, muisshgth
gains, or learning due to interaction with the environment that alters centraliser
system connectivity based on neural plasticity mechanisms. While cenaural
myelination is an ongoing process during infancy, and physical growth andtktgains
are apparent, Hadders-Aldra (2005) describes the emergence of the secandhility
from primary variability in infant sitting as being related to motorriesy, and the
increased use of appropriate motor synergies, while acknowledging that stiraetifer
control parameters may also be contributing. If an important control paramete
increased experience, how is that translated into more appropriate motores/mhgvgat
is it that an infant learns when learning to sit? One possibility is thattér@al model of
the infant is refined to the point that correct control decisions can be made, allbging
emergence of the new behavior (Chen, Metcalfe, Jeka, & Clark, 2007). The d@script
of an improved internal model is somewhat of a mechanistic description of thenghangi

attractor landscape, where the internal model is thought to be associatedeb#ilae
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function (Ebner & Pasalar, 2008). Hadders-Algra (2005) studied the response to postural
perturbations to arrive at these conclusions that the transition allowsrbsfiense to
external perturbations with “secondary variability” in postural control tham tivet
“primary variability” found in younger infants. Our study did not include pertiwshatin
the protocol, but internal perturbations, such as breathing movements, are prdsent. If t
infant’s internal model of their body is not well refined, then response to a padaorbat
even if it is simply the breathing of the infants, will not be as well controllednasuld
be with a better internal model. Sitting postural sway in infants has been shown to
increase with the acquisition of walking skills, which was interpreted as beirtg due
changes of the infant’s internal model of their body with walking (Chen, Metdaka,
& Clark, 2007), showing that infants are actively refining their internal inadd that
sitting postural sway can change based on changes in the internal model. Xterthe e
that the younger infant’s internal model of their own body is not yet well develdyed, t
movement of any part of their body may act as an unexpected perturbatidingo sit
posture. The infants in our study at age 7.9 months likely have not only a bettertability
deal with unexpected perturbations than the infants at age 4.9 months as Hadders-Algra
(2005) data on response to external perturbations would suggest, but also a more refined
internal model of their body so that they would be expected to encounter fewer
unexpected internal perturbations.

Our data comparing sitting behavior of infants with typical development to
infants with delayed development also fits well with other reported entespits. We
found differences between early sitting postural sway of infants with typicalagement

compared to infants with delayed development, with the ApEn(m=1, r=std(Data),
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t=8.33sec@240Hz, lag=8) being lower in the postural sway of infants with cerebral
palsy. Our result of higher approximate entropy for postural sway of infamtsypital
development is consistent with the results of Donker, Ledebt, Roerdink, Savelsbergh &
Beek (2008) who find lower sample entropy, a measure very similar to apptexima
entropy, for standing postural sway in infants with cerebral palsy. Appatgientropy
has been described as a measure of complexity (Pincus, 1991). Infants wéh typi
development have been described as having more complex movements than infants with
cerebral palsy, perhaps due to impaired cerebral connectivity (Haddees-208). If
approximate entropy is a measure of complexity, then the higher ApEn(nstd(Data),
t=8.33sec@240Hz, lag=8) values we found for postural sway of infants with typical
development are consistent with the reported higher complexity. We see thelbegh va
for ApEn(m=1, r=std(Data), t=8.33sec@240Hz, lag=8) decrease with development,
whereas Hadders-Algra (2008) hypothesizes that complexity should alwayhbefor
infants with typical development, regardless of age. However, Hadders-20§/38)(
reports different types of movement complexity, including “pre-term”, twrg”, and
“fidgety”, depending upon the age of the infant. Our particular analysis maypenly
sensitive to one particular type of movement complexity that is prevalent msinien
they are 5 months old, i.e. the early sitting in our study. Infants with cerebnahpays
have inappropriate muscle sequencing, even in older children (Wollacott & Skumwa
Cook, 2005; van der Heide & Hadders-Algra, 2005).

The development of motor skills has also been considered from a developmental
psychology perspective, where the development of locomotion has been described as

initiating a psychological reorganization that is wide ranging and impactgption,
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spatial cognition, and social and emotional development (Campos, Anderson, Barbu-
Roth, Hubbard, Hertenstein, & Witherington, 2000). While locomotor development may
occur in synchrony with cognitive performance, the unilateral focus of Campos,
Anderson, Barbu-Roth, Hubbard, Hertenstein, and Witherington (2000) on motor skills as
the cause of cognitive change is unfortunate given that cognitive chdikgdyislriving
motor skill acquisition just as much as motor skill acquisition is driving cognitizage
(Bushnell, 2000). However, Campos, Anderson, Barbu-Roth, Hubbard, Hertenstein, and
Witherington (2000) make an interesting point that locomotion allows the infant to
explore the environment by moving to and exploring objects of interest, therelgyrenga
cognitive function that might not otherwise be active. Relating this speculatounr t

study, sitting likely affords some of the same cognitive benefits as locomotiandee

the visual exploration of the environment is enabled by a stable sitting posture, and
reaching to nearby objects is enabled by a stable sitting posture. From fecezof
Campos, Anderson, Barbu-Roth, Hubbard, Hertenstein, & Witherington, (2000), one
might speculate infants development of upright sitting skills would enhance gegniti
development, and from this perspective the higher incidence of mental retardation in
infants with cerebral palsy (Odding, Roebroeck, & Stam, 2006) would be attributed to
poor development of motor skills. However, from the perspective of bidirectionality of
causation of Bushnell (2000), the cognitive interest in surrounding environment is also
likely important in development of the motor skill. From this perspective the high
incidence of mental retardation in infants with cerebral palsy (Odding, Roebroeck, &
Stam, 2006), may contribute to the delay of motor skill acquisition, as the intdllectua

curiosity motivating the infant to explore the environment may be lower in infatfts w
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mental retardation. However, one cannot neglect the possibility that the tonrela
between mental retardation and cerebral palsy is only partially one ofarzdiséfect,
and that both are substantially mediated by the severity of the original brain inj

The cultural influence on motor development is an intriguing aspect of
development as it supports the notion that experience influences motor development, as
the different experiences that infants have in different cultures resultenedites in
motor development. In African societies where early sitting is encourageal &yts’
manipulating of infants’ posture, the infants develop sitting at an earlier agped! s
more time in an unsupported sitting posture than American infants, and it is hypathesize
that experiencing a greater number of postural positions influences motondeaf
postural control (Bril & Sabatier, 1986). The development of postural control is not
entirely a matter of maturation of biological control systems, but slsdluenced by the
environment in which the infant develops. However, there is no culture in which infants
develop independent sitting skills at age 1 month, as the neuromuscular system
apparently cannot control sitting at that age regardless of environmental ieBu&he
development of postural control is not entirely a matter of the environment in \ubich t
infant develops, but also depends on the maturation of the biological control systems. It i
the interaction of the biological system and the environment in which it develops that
determines the outcome of the infant’s motor development, not simply biology or
environment acting alone.

The postural positions that an infant experiences without external intervention,
such as those performed by the parents in the African societies (Brba&i&a 1986)

discussed above, are a result of movements the infant makes itself. If mticmpa@se
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beneficial for motor learning of postural control, then there would be a benefitdatsnf

to move more, but what benefit is there to moving in a random manner? Fractal
movements, such as Levy flights, are more random than periodic movements, and are a
good search method. For example, Levy flights are used by animals fdrisganc area

for food or mates (Reynolds & Rhodes, 2009). Infants sitting postural sway has been
shown to be fractal (Deffeyes, Kochi, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009).
Thus the higher entropy postural sway may be an adaptive method for exploring various
postural positions. It seems counterintuitive that a young infant with poor postural cont
skills would attempt to use a wide range of different postures, as adopting new
challenging postures may result in falls. However, unlike falling in adultstag cause
injury, infants’ falling is typically inconsequential from an injury standpaand is

instead part of the exploratory behavior of an infant as they learn new mot®saki

as sitting, crawling, cruising, and walking, and learn to use these skills in novel
environments (Adolph, 2008). The biological interpretation of the large value of the r
parameter used in the analysis is that large excursions of the COP aredré&n bie

counted as non-matches by the approximate entropy algorithm. Near fadl, evieate

the infant nearly falls but then recovers balance, might give rise to kegesm®ns in the
COP. Actual falling events were not included in the data, the infant must bg Bitti

order for the trial to be used. Higher entropy for early sitting infants wilal

development might then reflect more near fall events, as compared to more developed
and thus more skilled sitting. Higher entropy for infants with typical developrsent a
compared to infants with delayed development may indict an increased willingness

engage in behaviors that result in near fall events as they explore varioa$ contr
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strategies.

Adults have difficulty in producing random movement patterns even when
requested to do so (Newell, Deutsch, & Morrision, 2000), so it is perhaps not surprising
that the typical infants sitting behavior loses much, but not all, of its random quoality i
becoming more adult-like. Optimal variability theory (Stergiou, Harbourne, &
Cavanaugh, 2006) suggests that there is an optimal randomness in human movement
variability, and early sitting in infants with typical development may have glodi
randomness compared to optimal adult values, with a subsequent loss of variability with
development. However, this study only assesses infant sitting at two poime jratid
there is no reason to believe that the development of infant sitting is linear pragres
towards adult sitting (Adolph, Young, Robinson, Gill-Alvarez, 2008; Harbourne &
Stergiou, 2003). While some authors suggest daily evaluation of a motor skill in order to
assess developmental nuances (Adolph, Young, Robinson, Gill-Alvarez, 2008), a major
goal of this work was to understand the parameters necessary for the apfexrapy
analysis, rather than mapping out the shape of the developmental trajectory.

An interesting aspect of the postural sway features that we found are the high
frequencies of the COP movements. The features in the 20-30 Hz range arénat a hig
frequency than is typically found in postural sway data, or even in other types afh hum
movement data. Human clapping can be maintained as fast as 7 to 8 Hz (Morrison, Hong,
& Newell, 2009), and the world’s fastest drummer can perform tapping movements no
faster than 10 Hz (Fuijii, Kudo, Ohtsuki, & Oda, 2009). Because of their high frequency,
these COP movements are not thought to be related to any type of voluntary movement

of the infants, and trials with observable repetitive movements, such as clapping or
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flapping the arms, were excluded from our analysis. Faster movementseemay
accomplished by reflexes, in particular the short latency reflexes st frem stretch
reflex mechanism. Although different authors adopt different definitions of stteridy,

one definition is a latency less than 60 msec is short latency (Taube, Schubent, Grube
Beck, Faist, & Gollhofer, 2006), and we would classify the features 33 to 50 msec as
being short latency, if they are in fact due to reflex activity. For comparisaiwluit

sitting the stretch reflex of the paraspinal muscles, which help stabiéizpine in

upright sitting, has a mean latency of 30.7 (21.3) msec in response to external
perturbations (Granata, Slota, & Bennett, 2004). The response latency is the time from
the perturbation until electromyography detects activation of the muscle. Ihdbes
include time for the muscle to reach full activation, which in adults was ancaditi

71.3 (27.7) msec (Granata, Slota, & Bennett, 2004). Thus the fastest reflex response
might be fast enough to contribute to the 20-30 Hz, 50-33 msec features that we find in
the anterior-posterior sitting postural sway of typically developing infana As
comparison, normal finger tremor includes a 20-25 Hz component that is produced by the
stretch reflex loop (Deutsch & Newell, 2006). However, for this tremor the finegue
depends on the inertial properties and the stiffness properties of the limb, and td the bes
of our knowledge, the frequency for infant trunk movements has not been reported, but
might be considerably different than the reported 20-25 Hz range for fingenrmante
Perhaps the near-fall events, where the infant nearly falls but recoversgdiabsve),
result in high frequency components of the COP either by exciting a stri¢ch) oe

from high accelerations associated with the fall and/or recovery redidsue vibrations

in the high frequency range. The features in the 20 to 30 Hz range of the power spectra
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of sitting postural sway of typically developing infants may be stretitéxrassociated
movement, but it is not clear that this is the case.

Is it reasonable to propose stretch reflexes are active in unperturbed inifagf® sit
Historically, reflexes were thought to be the main posture control mechanismeigut m
recent work has shown posture control is a more complex sensory motor integration
problem (Horak, 2006). Additionally, the small movements in well-controlled postural
balance do not seem capable of exciting a stretch reflex. Proposing strietabsraf a
sitting posture study seems unlikely from this perspective, but sittinguimgyiofants is
not as well controlled as in adults. Postural control in adult standing has been much more
widely studied than infant sitting, and one might hypothesize that similar control
mechanisms are operative in infant sitting. Because stretch refileadgplay only a
small role in unperturbed adult standing postural control (Bove, Trompetto, Abbruzzese,
& Schieppati, 2006), it might be argued that stretch reflexes are not activeyimésant
sitting. However, while stretch reflexes are not the main mechanism foolcohsitting
posture, evidence for stretch reflexes making some contribution to infant sittiaggbos
sway has also been reported by Hadders-Algra, Brogren, and Forsserberg ({t6@8). S
reflexes are certainly important in generating a quick response toeanabierturbation
in adult sitting (Granata, Slota, & Bennett, 2004), but may not be activated in ubpdrtur
sitting in adults. There are some important differences between adult postiral and
young infants postural control. Adult postural control can potentially use information
from a wide array of different sensory modalities, including visual infoonatiestibular
information, joint proprioceptive information, cutaneous information from the plantar

surface of the feet, as well as sensory information from the muscles. Someeof the
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sensory modalities are not as well developed in the infant compared to adults or even
older infants, and sensory integration capabilities are not as well develSpedren do

not achieve fully adult-like sensory integration until they are 12 years old¢&ete
Christou, Rosengren, 2006). Using an oscillating moving-room experimentalgraradi
infants’ sitting postural sway was found to become more strongly entrained tsulé vi
stimuli as they reached the age where they learned to sit (Bertdttisal & Bai, 1997),
and infant sensitivity to optic flow in contraction (meaning the image appehes t
moving away from the infant) increased from 2 to 8 months, but still had not attained
adult values (Brosseau-Lachaine, Casanova, & Faubert, 2008). The vestibular-ocular
reflex matures as infants learn to walk (Wiener-Vacher, Toupet, & Nh9&g). Thus

the younger, typically developing infants in our study did not have the full spectrum of
sensory information to use for posture control. One might speculate that, as afresult
having fully developed sensory input to the postural control, postural sway carries the
body to more extreme positions, sufficient to trigger stretch reflexestiéalally, infants

in early sitting more often adopt a “prop sitting” posture where they lean ridaveal

place their hands on the ground or on their legs, and support some of their upper body
weight with their arms. Perhaps because of the forward leaning, the ingmstiscles

are closer to being stretched to the threshold that can trigger a stfiestchared thus
smaller amounts of postural sway in the anterior direction may be capabtgefitrg a
stretch reflex. The differences found in our study were only significant in teeant
posterior direction, not in the medial lateral direction, consistent with alsteftex of

the hamstring muscles being triggered more often from a forward leanigedhese

results do not indicate that stretch reflexes are the main control mechantbm ifdant
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controlling postural sway, but merely that the differences between the infiimts
developmental delay and those with typical development are more pronounced on time
scales that are associated with reflex control.

If the features are related to a stretch reflex, why then would higten(fn=1,
r=std(Data), t=8.33sec@240Hz, lag=8) values be associated with the movehent? T
stretch reflex in adults is well tuned, with the muscle stretch inducingaction in the
muscle that was stretched, and inhibition of the antagonist muscle. However, ia infant
the stretch reflex sensory neurons project to a number of different motor muscthes, a
connections have not yet been optimally tuned (Myklebust & Gottlieb, 1993; Licl&man
Colman, 2000). Thus when any given muscle is stretched, a variety of musclestcontrac
generating movement in a direction that is not entirely appropriate. Thugties hi
entropy values in postural sway of early sitting of typically developiranisfare
consistent with the occasional occurrence of a movement that triggers a stitetghrr
conjunction with the poorly organized postural sway as result of reflex ir@udihtat is
present in these younger infants. ApEn(m=1, r=std(Data), t=8.33sec@240+8), lag
decreases as the infants develop, consistent with better coordinatedatfiex a

If the features we observe in the early sitting postural sway data fromsimfaht
typical development are indeed due to a stretch reflex, then why do the infants with
delayed development not have these features in their postural sway data? Orad potent
reason for not seeing stretch reflexes in the data from infants with delayelopment is
that if the infant moves enough to trigger a stretch reflex, the reflex may g poor
coordinated and cause the infant to lose balance and fall, and we did not use data in our

analysis where the infant was falling, which may have resulted in not inglddia
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where stretch reflex was activated in infants with delayed development.

A second potential reason is that the emergent behavior in infants with cerebral
palsy is different that in infants with typical development because the neuroaruscul
control constraints are different, and the optimal behavior for each systdifensni
For example, muscle firing patterns in walking that emerge in infants witmSow
syndrome are longer than in infants with typical development, and this emerdent pat
is thought to be adaptive in these infants in order to help stabilize lax joints (Chang,
Kubo, & Ulrich, 2009). Children with cerebral palsy have hyperactive stret@xesfl
(Poon & Hui-Chan, 2009), although the functional implications of the altered reflexes ar
not entirely clear (Matiello & Wollacott, 1997). In some cases, spgsticlimbs
associated with cerebral palsy may be a result of an altered stifédgH{van Doornik,
Kukke, & Sanger, 2009). The infants with delayed development also use a prop sitting
posture in early sitting, and unlike the infants with typical development, somémai
this posture in developed sitting. It may be that these high frequency $eateneot seen
in the sitting postural of infants with delayed development because the infdnts wit
developmental delay do not exhibit as much movement as those with typical
development, and therefore are less likely to trigger a stretch reflex. Aypseamalysis
of this data set, minus a few subjects who had not yet finished the study, foundrite infa
with typical development had slightly more postural sway than infants withedkela
development, although the difference was not statistically significante(2st
Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009). Given the nonlinear response of the
stretch reflex, that small difference measured in amount of movement mayrée

important than the linear statistical analysis used in that study would mdicat
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Additionally, if the infant has learned through experience that certain behaygarsr a

stretch reflex, and if that poorly coordinated stretch reflex results i ghiainfant may

adapt their behavior to avoid triggering a stretch reflex. Sitting stjl be an adaptive
response to an altered stretch reflex in these infants. Children with Gipareed to use

more top-down postural control (van der Heide & Hadders-Algra, 2005), perhaps because
reflexive control is less functional in these children.

A third potential reason for not seeing a stretch reflex response in the postural
sway data is that it may be related to some unknown parameter that chahges nvél
development of the infants, rather than to typical or delayed developmentalkAessa
of the experimental design is that, even though both the infants with typical development
and the infants with delayed development were just learning to sit, the infamts wit
delayed development were necessarily older than the infants with typickiplaeat.

Thus any normal developmental change, such as height gain, change in body adipos
mass, change in lean mass lean mass, could account for the differences welobserve
Changes in anthropometric features in infants can have unexpected consequeaces. As
example, the stepping reflex seen in young infants appears to disappear with
development. If young infants are held over a moving treadmill, their fdehake

stepping motions on the treadmill surface (Thelen, Fisher, & Ridley-Johnson, 1984). As
the infants developed, they no longer make these stepping movements. Thelen, Fisher,
and Ridley-Johnson (1984) found the reflex had not disappeared, but rather the infants
had gained mass due to growth, and the muscle strength had not yet caught up, and if the
infants’ legs were submerged in water, such that the buoyancy force helped support the

infant’s mass, the stepping movements were again observed. Similahg,tggitally
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developing infants in our study developed from age 4.9 months at early sitting to age 7.9
months at advanced sitting, weight gain may prevent small contributions from refle
activity from moving the mass of the infant enough to be detected by the force Hiate
high frequency features were not observed in the infants with delayed develogment, a
any time early or advanced sitting. These infants were age 14.1 montHy aittag
and 18.1 months at advanced sitting. While these infants were delayed in their
development, they were also older than the typically developing infants, and thus may
have different anthropometric characteristics than the typically deuglapfants.

There is also the possibility that the high frequency features are due to s@®e ca
other than a stretch reflex. While stretch reflexes are fast for contmabwément, the
fast movements we see in our study may not be controlled movements. Often gait data i
low pass filtered in order to remove high frequency contributions from tissueimitsrat
that occur on impact of foot with the ground. There is a possibility that the high
frequency features found in this study are some type of tissue vibration. Perhpjgs a
change of direction might be able to cause enough vibration of soft tissue for the
vibration to be detectable. However, in sitting there are no impacts with the ground to
excite tissue vibrations. Vibrations could be excited by quick movements in th@anteri
posterior axis, accounting for the high frequency features in the anterioripoS®©P
data. However, root-mean-square and range of movement did not differ significantly
between infants with developmental delay and infants with typical developméet in t
anterior-posterior axis (Deffeyes, Harbourne, Kyvelidou, Stuberg, & $tergbd09), so
differences in vibration would perhaps be due to differences in mass distributissuer

elasticity between the two groups. Infants with cerebral palsy may ha#wag difficulties
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(Sleigh, Sullivan, & Thomas, 2004), prevented adequate nutrient intake during
development and thereby reducing the adipose tissue compared to infants with typical
development (Kuzawa, 1998).

Opportunities for further work

One area that was not investigated was the use of filtering to remove noise.
Filtering data for linear analysis or spectral analysis is ades#loped area of signal
processing, but filtering for nonlinear analysis is not as well developed. Uiersf
designed for linear or spectral analysis prior to nonlinear analysis magltlerpatic
(Rapp, Albano, Schmah, & Farwell, 1993; Schreiber & Katz, 1995; Theiler & Eubank,
1993) as the filters have been designed to preserve certain linear and sgpetrtd of
the data, and may not preserve nonlinear features that are of interest in nonéheas.an
However, many researchers use standard filter techniques on standing postycatsy
such as a low pass Butterworth filter (Donker, Ledebt, Roerdink, SavelsbeBgek&
2008; Hong, James, & Newell, 2008; Stins, Michielson, Roerdink, & Beek, 2009; ),
Savitsky-Golay smoothing (Hong, Manor, & Li, (2007), and some authors use detrending
methods which effectively serve as filters for the data (Costa, Ryijlgsitz, Wu,
Huang, Goldberger, & Peng, 2007). Our results suggest that down-sampling or
appropriate choice of a lag value may be a good alternative to filteringdaies but we
did not investigate filtering, so a test of this hypothesis is needed. Another approach t
removing noise from the data is to use equipment for data collection that gikes hig
signal-to-noise data, so that the dynamics of the system under study carebeaddy
qguantified without filtering. Future studies from this lab on infant sitting wgé force

plate equipment with a dynamic range selected specifically fantisfding postural
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analysis.

There are a number opportunities for further exploration of the approximate
entropy algorithm and related measures. Attempting to select the one lmést set
parameters for approximate entropy misses the opportunity to use multgpbé set
parameters to characterize a data set. For example, values of apprexitr@gig both
using low and high values for the r parameter may provide a useful contrast, if the data
has different dynamics at different length scales, such as our data thdtdreachs
with r=1*std(Data) versus r=3*std(Data). Similarly, differences da@xist on different
time scales, and multiscale entropy could be used to more rigorously inteetiga
entropy of dynamics that occur on multiple time scales (Costa, Goldbergends P
2002; Costa, Priplata, Lipsitz, Wu, Huang, Goldberger, & Peng, 2007). Postural sway
data is not necessarily stationary (Schumann, Redfern, Furman, el-JaropdirrGha
1995), and these high frequency features are likely not occurring all the time,ybloé ma
occurring only sporadically in the sitting position. Time frequency analgsisumann,
Redfern, Furman, el-Jaroudi, Chaparro, 1995) or wavelet analysis might@ige m
insight into the occurrence of these features. Additionally, using techniques such as
electromyography to monitor muscle activity after perturbation of sitind,
accelerometers to monitor tissue vibration, might shed light on the origins of 8@ 20-

Hz spectral features.

SUMMARY:

The use of standard parameters, ApEn(r=.2*std(Data),m=2, N, lag=1) , for the

approximate entropy analysis may work well for comparing systems aiyhdifferent
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dynamics, but to detect more subtle differences, the standard paramstens ina
optimal. A useful pragmatic finding of this work for researchers who use nonlinear
measures is that spectral analysis can be used as a guide to seleenhaggra for
approximate entropy analysis. From a clinical perspective, this work issoéstbecause
the design of an infant postural analysis system, coupled with computer fandatsis,
may one day bring this technology to the clinical setting for a more seresit@hgsis of
postural control than is currently available. From a developmental neuroscience
perspective, this work is of interest because it suggests the possibilidysthait latency
reflex for control of sitting posture is operative, perhaps triggered by ritarfiae

stretch reflex does not disappear with development, so the disappearance asinede
short latency reflex contribution to postural sway may be a result of not beivaiedin
older infants as other sensory modalities develop and postural control improves. More
work is needed to elucidate the important of the stretch reflex in early giggtgral
control, and to understand the differences in postural control between infants with

developmental delay and those with typical development.
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Figure 4.1. All data acquisition used the same force plate, which is built intothed

is typical in a gait laboratory. a. single pendulum, b. double pendulum, c. infant sitting.
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(middle) and noise (bottom) using a Savitsky-Golay smooth to estimate tia¢ sigd

subtracting the signal from the data to estimate the noise.
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Figure 4.6. Effect of R-parameter. Wilcoxon rank sum (Mann-Whitney Upest)ues

for comparison of approximate entropy(m=2,r,t=8.3 sec, lag) for single versug doubl
pendulums (triangles), infants with cerebral palsy versus typical devehbmenterior-
posterior axis (circles) and in medial-lateral axis (squares), gplotiesus R value used in
the calculation of approximate entropy. Similarity of points in comparison vedsrs
determined by R*std(Data) in plots a and b, and by R*std(estimated noise) in pluit c. PI
b is an expanded plot of the infant sitting data in a, for comparison with plot ¢ using the

same y axis scale as plot ¢, but note x axes differ between plots b and c.
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Figure 4.7. Effect of sampling frequency and lag. Wilcoxon rank sum (Mann-Whitne

test) p values for comparison of approximate entropy(m, r=std(Data), t=8lagefor

single versus double pendulums (triangles, plot a), infants with cerebral palsg ver

typical development in anterior-posterior axis (circles, plots a and b), plottaasve
frequency obtained by down-sampling the 240 Hz data using lag=1 (plots a and b), and
versus lag value using 240 Hz data (plot c¢). Plot b is an expanded plot of the infant sitting
data in a, for comparison with plot ¢ using the same y axis scale as plot c, bubarete

differ between plots b and c. Legend symbols apply to all three plots.
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infant sitting postural sway in the anterior-posterior axis, based on the anaksented

in Figure 4.7b and 4.7c. The vertical axis is p values from comparison of approximate
entropy(m, r=std(Data), t=8.3 sec @ 240 Hz, lag) using various lags (see #igciy
corresponding to down-sampled frequency, plotted versus Wilcoxon rank sum (Mann-
Whitney U test) p values for comparison of down-sampled approximate entropy(m,
r=std(Data), t=8.3 sec, lag=1) (see Figure 4.7b). Corresponding frequencyGé4mns

down-sampled p-value is paired with 240 Hz data using lag 4 p-value, for example.
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Figure 4.9. Effect of length of time series on the analysis. 4.9a. Wilcoxon rank sum
(Mann-Whitney U test) p values for comparison of approximate entropy(td([D=ga), t

@ 240Hz, lag=8) for single versus double pendulums (triangles), infants withaterebr
palsy versus typical development in anterior-posterior axis (circles)gghogrsus length

of data acquisition in seconds. 4.9b. Mean values of ApEn(m=1, r=std(Data), t @ 240 Hz,
lag=8) plotted versus length of time series used in the analysis. 4.9c. Standardrdevia

of ApEn(m=1, r=std(Data), t @ 240 Hz, lag=8) plotted versus length of time series use

in the analysis.
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and in the medial-lateral(ML) axis (b). Groups were infants with typicalldprent

(TD) and infants with delayed development (DD).
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Figure 4.11. Spectral analysis of infant sitting postural sway in the arpesterior axis.
Plotted in black is the average periodogram for all trials for infants witHajewental
delay, early sitting (a), advanced sitting (b), and infants with typicalal@vent, early
sitting (c) and advanced sitting (d). To aid in visual comparison, plotted in grey on all
four plots is the average periodogram for all trials of the developmentallyedelegrly
sitting. Artifacts seen at 30 Hz are due to electrical power distribution rambarelated

to infant sitting.
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Figure 4.12. Spectral analysis of infant sitting postural sway in the matéied axis.
Plotted in black is the average periodogram for all trials for infants witHajewental
delay, early sitting (a), advanced sitting (b), and infants with typicalal@went, early
sitting (c) and advanced sitting (d). To aid in visual comparison, plotted in grey on all
four plots is the average periodogram for all trials of the developmentallyedelegrly
sitting. Artifacts seen at 30 Hz are due to electrical power distribution rambarelated

to infant sitting.
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CHAPTER 5
NONLINEAR DETRENDED FLUCTUATION ANALYSIS OF SITTING
CENTER-OF-PRESSURE DATA AS AN EARLY MEASURE OF

MOTOR DEVELOPMENT PATHOLOGY IN INFANTS

Abstract: Upright sitting is one of the first motor skills an infant learnsttaungl sitting
postural control provides an early window into the infant’s motor development. Early
identification of infants with motor developmental delay, such as infants withregr
palsy, allows for early therapeutic intervention by physical therapistly. iBgervention

is thought to produce better outcomes, due to greater neural plasticity in yodages. i
Postural sway, as measured by a force plate, can be used to objectively andtigefnti
characterize infant motor control during sitting. Pathology, such as cepalsyl may
alter the fractal properties of motor function. Often physiologic timeselata,

including infant sitting postural sway data, is mathematically noresety. Detrended
Fluctuation Analysis (DFA) is useful to characterize the fractal naturmefseries data
because it is does not assume stationarity of the data. In this study we foisuit&ide
selection of the order of the detrending function improves the performance of the DFA
algorithm, with a higher order polynomial detrending better able to distinguiesti i
sitting posture time series data from Brown noise (random walk), and fiest or
detrending better able to distinguish infants with motor delay (cerelss) fiilm

infants with typical development.
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INTRODUCTION

Cerebral palsy is a result of brain injury that occurs early in life, eefluring or
shortly after birth, and occurs in 1.5 to 2.5 per 1000 live births (Paneth, Hong, &
Korzeniewski, 2006). Many areas of the brain can be involved, including the motor
cortex, periventricular area, or basal ganglia, which subsequentlysatieatontrol of
movement (i.e. motor control). The injury may be due to many causes, such as placental
lesions and/or umbilical cord obstruction (Redline, 2008), exposure of the mother to
certain chemicals during gestation (Kenyon, Brocklehurst, Jones, Marltyn& Saylor,
2008), and is often associated with premature birth (Hemming, Colver, Hutton,
Kurinczuk, & Pharoah, 2008). While the injury occurs early in life, the effects of the
injury impact the individual for the rest of their lives (Krakovsky, Huth, Lin, &ihe
2007). Abnormal movement due to cerebral palsy can result in abnormal bone
development sometimes requiring corrective surgery, especially at thartip |
(O'Sullivan, Walsh, Hewart, Jenkinson, Ross, O'Brien, 2006). If the infant does not learn
to sit by age 2, there is a good chance that they will never learn to walk (dariraz
Burnett, & Braga, 1994; Fedrizzi, et al., 2000). Physical therapy for these ohildne
be most beneficial if started early in life, when the brain is better al#ano &nd adapt
(Blauw-Hospers, de Graaf-Peters, Dirks, Bos, Hadders-Algra, 2007). A eeliabl
guantitative measure is needed to assess infant motor control early in infdarpelp
clinicians identify infants who might benefit from interventions, and (b) help plysi
therapists assess the effectiveness of the intervention. Current methodssihass are

inadequate (Heineman & Hadders-Algra, 2008).
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Upright sitting is one of the first developmental motor milestones that an infant
achieves. Attainment of the ability to sit upright is important as it indi¢cegakhy
development of the infant, and also because the upright sitting posture will allow the
infant to explore the environment from a stable upright posture (Harbourne &o8tergi
2003). Additionally, sitting is an early indicator of motor development, and identifying
infants with motor development delays early in life, when therapeutic intervenign m
be most effective, is desirable (de Graaf-Peters, Blauw-Hospers, Bakker, Bos, &
Hadders-Algra, 2007). Thus using sitting posture as a window into an infant’'s motor
control development has the potential to identify infants with motor dysfunction, such as
that caused by cerebral palsy, as opposed to a transient motor delay. Identifittis
dysfunction early in life when therapy may be most effective has the bterbe a
sensitive indicator of progress being made in therapy.

Motor control in infants is typically judged in a clinical setting by observing
specific behaviors, such as rolling to the appropriate side if a toy is prksenta@e side.
To quantify motor development, tests such as the Peabody Gross Motor Skilldliest (F
& Fewell, 2000), are used which assign points based on the behaviors that can be elicited
by the clinician, such as rolling towards the toy, and comparing with standardfafus
of that age. While some of these tests may have high reliability, thegc&ned in ability
to discriminate between healthy and pathologic infants (Spittle, D&yBayd, 2008),
and thus would likely not be useful in monitoring progress of the infant receiving
physical therapy intervention. New tests are being developed to try aral/artpe
results (Heineman, Bos, Hadders-Algra, 2008). Because the standardetéstseal on

what can be visually observed by the clinician, they require significaningeof the
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clinician to produce consistent results. Developing a new test with objective sgeabur
motor control that can be administered by an untrained individual has the potential to
improve clinical identification of infants who have motor control pathology, such as
cerebral palsy, and may be useful in assessing progress in therapy. Aliiglitomew

test that is based on highly sensitive measurements, coupled with suitable kyata ana
techniques, may allow sensitivity and selectivity above and beyond what even the best
trained clinician is able to observe visually.

The use of a force plate to objectively measure postural ssvaypotentially
useful technique to quantify sitting behavior. A force plate igid plate instrumented
with force transducers to measure force applied to the platé diredtions. From this
data, the center of pressure (COP) can be calculated for bathtérer-posterior (front-
to-back) postural sway and the medial-lateral (side-to-sidefuabssway, and then
stored on a computer for analysis. The COP is the point at wiechesultant force
vector from the infant’s body contacting the force plate intéssthe plane of the force
plate. Thus the COP is a time series that captures the swatyeassociated with posture
control that is not evident visually to an observer. COP analysis has beaio egamine
standing posture of children with cerebral palsy (Donker, LedebtdiéeSavelsbergh,
& Beek, 2008), making it a logical candidate technique to explore spirsgure of
children with cerebral palsy. The force plate can quantify suhilés in posture that a
human observer would not be able to notice, and add valuable information datéhe
collected during a movement evaluation. Analysis of force platefaatainfant sitting
thus has the potential to be increase the accuracy and objecfidatyrently available

methods for assessment of motor control in young infants. Traditional sthinsgasures
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such as variance, range, etc. can be used to quantify the viriaebiGOP time series
data. However, these measures ignore an important featureeafdmes data, in that the
time aspect of the data is ignored. For example, if the timessdata were to be
randomly shuffled, the variance would be the same. In order to pirelsynamics of the
system, a different type of measure is needed. Methods from ramdgaamics may
provide the sensitivity to motor control system dynamics (Guas006) that is needed
to probe clinically relevant aspects of postural sway in infatihgi (Harbourne &
Stergiou, 2003; Stergiou, Harbourne & Cavanaugh, 2006).

Fractal properties of the human neuromuscular system can be seen in
electroencephalogram (EEG) recordings of brain waves (Nikulin & Bris2085; Hwa
& Ferree, 2002), as well as in recordings of human movement, such as walking gait
(Jordan, Challis, & Newell, 2007), running gait (Jordan, Challis, & Newell, 2006),
standing posture (Kim, Nussbaum, & Madigan, 2008), and eye movements (Shelhamer,
2005). Fractal properties are an emergent property of the system dyreamdits the
extent that a given pathology disrupts those dynamics, the resulting fractatipsoypél
be altered. For example, the fractal properties of EEG are seen to beé alter
Alzheimer’s disease (Abasolo, Hornero, Escudero, & Espino, 2008), in stroke (Hwa, He,
& Ferree, 2003), and in depression (Lee, Yang, Lee, Choi, Choi, & Kim, 2007). In
Huntington’s disease, the fractal dynamics of walking gait are found todoedhlt
compared to healthy controls (Hausdorff, Mitchell, Firtion, Peng, Cudkowicz, Wei, &
Goldberger, 1997). In searching for a measure of postural sway of infarg gitit we

would anticipate would be altered in cerebral palsy, fractal measarge@d candidates.
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The COP time series from postural control studies are considered to be
nonstationary (Carol & Freedman, 1993; Loughlin, Redfern, & Furman, 2003).
Nonstationarity in the mathematical sense means that the mean, variance, ghéfor hi
moments are different for different segments of the time series dat@a@mhto other
nonlinear measures, detrended fluctuation analysis (DFA) is thought to be mordaobust
nonstationarity (Peng, Havlin, Stanley & Goldberger, 1995), and thus might prove to be a
useful tool for infant sitting COP data analysis. Traditionally, DFA amalggerformed
by repeatedly dividing the time series data into segments of differgpih¢éerand then
measuring the average error (sum of the residuals squared divided by seggtbt le
after performing a linear least squares analysis on the data inghsrge A log-log plot
is made of the average error versus segment length. The DFA parameteaest iate
alpha, the slope of this plot. For a pure random walk alpha is 1.5, and for white noise
alpha is 0.5 (Peng, Havlin, Stanley & Goldberger, 1995).

DFA has been applied in a number of studies of medical pathology. For example,
DFA has been applied to fetal heart rate to detect pathology (Ferranori8ig&

Magenes, 2007) and adult heart rate (Peng, Havlin, Hausdorff, Mietus, Stanley,
Goldberger, 1995; Goldberger, Amaral, Hausdorff, Ivanov, Peng, & Stanley, 2002). DFA
has also been used to characterize gender and aging effects on respiration igtesg, M
Liu, Lee, Hausdorff, Stanley, Goldberger, & Lipsitz, 2002) and analysis of ktawvitya

from fMRI data (Lee, Hu, Gao, Crosson, Peck, Wierenga, McGregor, Zhao, & Whit
2008; Hu, Lee, Gao, White, & Crosson, 2008). One of the first applications to motor
control time series analysis was the investigation of long-rangdatens in stride

interval in unperturbed walking (Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995).
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Other motor control applications of DFA include finger tapping at differentdspee
(Kadota, Kudo, & Ohtsuki, 2004), gait with development and aging (Hausdorff,
Ashkenazy, Peng, Ivanov, Stanley, & Goldberger, 2001), gait with metronome beat
(Hausdorff, Purdon, Peng, Ladin, Wei, & Goldberger,1996), gait at different speeds
(Hausdorff, Purdon, Peng, Ladin, Wei, & Goldberger,1996; Jordan, Challis, Newell,
2007), and gait in Huntington’s disease (Hausdorff, Mitchell, Firtion, Peng, Cudkowicz,
Wei, & Goldberger, 1997). Thus DFA has wide-ranging applications in the medical
sciences, due at least in part to its applicability to analysis of noarstatitime series.
DFA has been found to be a relatively reliable measure of adult standing @OB€dl,
Nussbaum, & Madigan, 2008). DFA analysis of standing posture in elderly may be useful
in identifying individuals who are at risk of injury from falling (Amoud, Abadiwden,
Michel-Pellegrino, Doussot, & Duchene, 2007). DFA analysis of infant sitting dstur
sway data has not yet been reported.

Because DFA is an analysis of the goodness of fit of a linear polynomial, or more
accurately the “badness” of fit since it is the residuals of the fit teaised in the
calculation, any linear trend due to nonstationarity will be removed. Thus DFA is thought
to be robust to nonstationarity. However, there is no reason to believe that the
nonstationarity will be linear. In fact, given the prevalence of nonlineaepses in
physiologic control systems (Mackey & Glass, 1977), including human motor control
(Guastello, 2006; Schoner & Kelso, 1988), it would instead be surprising if the
nonstationarity were found to be linear. Nonlinear DFA can be performed, which
involves using higher order polynomials to perform the detrending (Hu, lvanov, Chen,

Carpena, & Stanley, 2001; Munoz-Diosdado & del Rio Correa, 2006). In this paper, we
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investigated the use of nonlinear DFA as a method to quantify clinically rel@zatds
from COP data from infant sitting. In order to determine if the nonlinear DFA is
capturing clinically relevant information, we compared data from two set$amits, one
with typical development, and the other with delayed development, where the delay in
development is likely due to cerebral palsy. We hypothesized that DFA willié&éoa
detect a difference between the two groups of infants, and that the dynamiesiof inf

sitting will be significantly different from Brown noise.

EXPERIMENTAL METHODS AND DATA ANALYSIS
Subjects
Infants were recruited into the study when they were just developing thg abilit
sit upright. Recruitment was done through newsletters, flyers, and pedigsicglh
therapists employed at the University. Subjects included 18 developmentajigdiela
infants, with an average age of 13.22 months (std = 2.96); and 23 typically developing
infants, with an average age of 5.08 months (std = 0.68). Infants in the developmentally
delayed group were diagnosed with cerebral palsy, or else were developnusitalbd
and at risk for cerebral palsy. Some of the infants in this group may not actwaly ha
cerebral palsy because definitive diagnosis at this age is difficult.kAhfemts met one
or more of the following conditions: premature delivery, brain bleeding (ofearay of
severity), diagnosis of periventricular leukomalacia, or significantly éelgyoss motor
development as measured on standardized testing. While a definitive diagnosis of
cerebral palsy had not been made, these infants were all developmeridgiyidand all

scored below 1.5 standard deviations below the mean for their corrected age on the
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Peabody Gross Motor Scale (Folio & Fewell, 2000). Thus it is possible thatla smal
number of these infants did not have cerebral palsy, and that the developmental delay is
due to another cause, such as early medical problems. Exclusion criteria includgd havi
an untreated, diagnosed visual impairment, a diagnosed hip dislocation or subluxation
greater than 50%, or an age outside the range of 5 months to two years. Typically
developing infants were screened for normal development by a physical therapit
admission into the study, being excluded if they failed to score above 0.5 standard
deviations below the mean on the Peabody Gross Motor Scale, had a diagnosed visual
impairment, a diagnosed musculoskeletal problem, or were older than five mohihs at t
start of the study. A consent form was signed by a parent/caregiver daatl in
participants, and all procedures were approved by the University of NebradiaaMe

Center Institutional Review Board.

Data Collection Methods

For data acquisition, infants were seated on an AMT]I force plate (Watertown,
MA), interfaced to a computer system running Vicon data acquisition softwake (L
Forest, CA). COP data were acquired through the Vicon software at 240 Hz, itoorder
be above a factor of ten higher than the highest frequency that might containtreleva
signal. Trunk and pelvis markers were also placed on the infant, but the markeaslata w
not analyzed for this study. An assistant sat to the left side of the infant duang da
acquisition, and a parent or relative (typically the mother) sat in front afifdoet, for
comfort and support, as well as to keep the attention of the infants focused on toys held in

front of them.
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Trials were recorded including force plate and video data from the back and side
views. Afterwards segments were selected by viewing the corresponding vide
Segments of data with 2000 time steps (8.3 seconds at 240 Hz) were selectedsieom the
trials by examination of the video. Acceptable segments were required to (a) have no
crying or long vocalization, (b) no extraneous items (e.g. toys) on the forfamplatc)
neither the assistant nor the mother were touching the infant, (d) the infant was not
engaged in rhythmic behavior (e.g. flapping arms), and (e) the infant had tongeasitt
could not be in the process of falling. Both anterior-posterior (front-to-back) adiidlme

lateral (side-to-side) center of pressure data was used for theignalys

Data Analysis Methods

COP data was analyzed using custom software developed using MatLab (Nantick,
MA). The 2000 time step data was analyzed as is, then divided into sub-segments, firs
into two segments each half the length of the time series, then into four segatnts
one quarter the length of the time series, etc., until segments were no shoregliha
time steps (0.0333 sec). Each sub-segment was fit with a polynomial (Figura8.1), a
then F was calculated as the average of the absolute values of the reaighalss the
slope of least squares fit from a log-log plot of F versus segment lengthprobeslure
was repeated four times, first for a first order polynomial, then for a secded tiren a
third order polynomial and finally, for a fourth order polynomial (Munoz-Diosdado & del
Rio Correa, 2006).

One way to calculate the DFA alpha value is to perform a least-squar¢hit t

log F versus log n plot, and this was one of the two methods we used. For very small
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window sizes, the slope of the log-log plot of F versus window size is sampling the
dynamics of the system on short time scales, and thus is likely contamigpated b
experimental noise. For very long window sizes, the slope of the log-log plot adusver
window size is altered because the window size is on the order of the length d&the da
time series. Thus a plot of experimentally acquired log-log plot of F versus wsidew
may not be linear at very high and/or very low values of n. One approach to calcalating
slope from this non-linear relationship is to restrict the window size to somegaybit
range of lengths that includes the region in the center that appears to be laesed\a
somewhat different approach which we felt was more objective. We fit thedqgjdt of

F versus window size to a third order polynomial, because a third order polynomial
allows for two inflection points that would allow the curve to fit the two expected bends
in the curve, one at short window sizes, and the other at long window sizes. We then
analytically calculated the slope of the polynomial, evaluating the deaatthe

middle of the window size range.

Fit of In(F) versus In(n): y= & bX’ + cx +d

Slope (DFA alpha): dy/dx = 3%x 2bx +c; evaluated at XFRdie

This appears to give a better estimate of the slope for some trials aédog-t
log plot of F versus window size was not linear (Figure 5.2).

In order to compare the infant sitting data to results from Brown noise, DEA wa
performed on 25 trials of pseudo-data. The “randn” function in MatLab was used to
generate Gaussian white noise time series the same length as thsitiign€COP data
(2000 time steps), which was then integrated with the “cumsum” function to create

Brown noise. DFA was performed using the same methodology described for tie infa
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sitting COP data. These results were compared to DFA results for infeintg # test

whether time series from infant sitting is different than Brown noise.

Statistical Methods

Independent t-tests were used to compare the DFA alpha values from COP data
for infants with typical development with DFA alpha values from COP data fortghfa
with delayed development. Independent t-tests were also performed to corikpare D
alpha values from infant sitting with brown noise, both for infants with typical
development and infants with delayed development. A significance lewet @001
was used to make comparisons (note the statistical alpha is a different doyrogpie
DFA alpha). There were 48 t-tests performed, and by correcting for raultipl

comparisons the level was set to .001 (.05/48 = .001).

RESULTS

DFA alpha values for COP data from medial-lateral postural sway fttingsi
infants (Table 5.1), and for COP data from anterior-posterior postural sway blahle
were not too far off of the value of 1.5 with first order detrending, which would be
expected for Brownian noise. Use of our analysis algorithm on computer generated
Brown noise results in values very near the theoretically expected re&ut (@able
5.3). However, t-tests showed that there are significant differencesdoeifant sitting
postural sway and Brown noise, especially for higher order detrending (Tabkasds.
5.5). Note that an analysis performed only with the standard method of first order

detrending would have concluded that postural sway for the medial-lateral aats is

www.manaraa.com



152

significantly different than Brown noise, but the higher order detrending found a
significant difference (Table 5.4). In the case of anterior-posterionabsivay (Table
5.5), using only the standard linear detrending would have lead to the conclusion that
postural sway of the infants with delayed development/cerebral palsy was not
significantly different than Brown noise, whereas postural sway of thokeypital
development was found to be significantly different than Brown noise. The analysis wit
higher order detrending found that both populations have postural sway significantly
different than Brown noise.

The method of evaluating the first derivative of the plot of In(F) versus In(n) at
the center, rather than simply evaluating the slope of a linear fit to alataedid not
have a significant impact in comparison of the DFA alpha values for medialtlater
postural sway (Table 5.4, compare asterisks indicating significantettiffes in top and
bottom sections of the table). However, it did have an impact in comparison to the DFA
alpha values for postural sway in the anterior-posterior axis (Table 5.5§ thieer
difference between Brown noise and postural sway for typical developargsns
significant for third and fourth order detrending. This was evident using the derivative
method for evaluating slope, but not for the slope of the linear fit. Thus, we believe this
method to be somewhat superior, and we have used results from this method in creating
Figure 5.3.

One goal of this work was to distinguish between infants with typical
development and infants with delayed development, where the developmental delay was
likely due to cerebral palsy. DFA alpha values for sitting COP from infaititsdelayed

development are compared to DFA alpha values for sitting COP from infants pidal ty

www.manaraa.com



153

development for the anterior-posterior axis, and are found to be significafehedtffor
first and second order polynomials, but only in the anterior-posterior axis {@.alple
The analysis of Brown noise was relatively insensitive to the order of the paginom
used for detrending, compared to the infant sitting COP. For Brown noise, the DFA
alpha value is close to 1.5 regardless of the order of the polynomial used for dgtrendin
(Figure 5.3 and Table 5.3). For infant sitting COP data in the medial-latexetlialr
(Figure 5.3a), the DFA alpha values were similar for infants with typicedldpment
and infants with delayed development, regardless of the order of the polynomial used for
detrending. However, for infant sitting COP data in the anterior-posteriatidire
(Figure 5.3b), the separation was least when the forth order polynomial was used for
detrending, with a first order polynomial giving the best separation (p = 0.0004; Tabl
5.5).
DISCUSSION

The theoretical DFA alpha value from Brown noise is 1.5 (Peng, Havlin, Stanley
& Goldberger, 1995) and the algorithm we used reproduced this result. Postural sway
time series data visually appeared very similar to Brown noise, and the cdfghit
study agreed with other published DFA results for adult standing where DF s resul
postural sway were similar to Brown noise with linear (i.e. first ordergdding.
Amound et al. (2007) used the DFA algorithm with linear detrending to evaluate postural
sway from elderly and young adults. However, they subtracted 1 from the PRA al
values that they report. Taking their reported values and adding back 1 to compare with
our values, we get DFA alpha values in the range of 1.25 to 1.55. This range compares

well to the results that we found for infant sitting of 1.22 to 1.52, with the DFA alpha
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values calculated using linear detrending. In another study of adult standmg, Ki
Nussbaum, and Madigan (2008) reported DFA alpha values between 1.31 and 1.48, also
within the range of our results. Thus our results are in good agreement with both
theoretical values and experimental values for adult standing from tlagureerDFA

alpha values for infants sitting have not been reported.

DFA is considered a measure of the fractal properties of a time seriesddoa
scaling behavior is probed by using different segment lengths of the datan Bome is
integrated white noise, and thus the value at one point in time affects values at other
points in time —i.e. long range correlations. While white noise has no long range
correlations and a correspondingly low DFA alpha value of 0.5, Brown noise has a higher
value of 1.5 (Peng, Havlin, Stanley & Goldberger, 1995). One way to interpret the results
is in terms of long range correlations, as has been done in DNA sequences (Peng,
Buldyrev, Havlin, Simons, Stanley, & Goldberger, 1993) and heart rate analysis (Pen
Havlin, Stanley & Goldberger, 1995). DFA results from gait data have also been
interpreted as being descriptive of long range correlations (HausdorfgrR ieng,

Ladin, Wei, & Goldberger, 1996). By examining the DFA alpha values calculated wit
the linear detrending, as it has been done in other studies, we found that infants with
typical development have less long-range correlations (lower alpha védlaesja

infants with developmental delay/cerebral palsy, for postural sway in théanter
posterior direction. Pink noise (e.g.'}6 intermediate between white noise Y1&nd
Brown noise (1/), and has a DFA alpha value between that of white noise and Brown
noise. Pink noise dynamics has been associated with healthy dynamics, as apposed t

pathologic dynamics (Goldberger, Amaral , Hausdorff, lvanov, Peng, & Stanley), 2002
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This is consistent with our findings that pathologic infant sitting was noststatly
different from Brown noise using DFA analysis with linear detrending, valsaxgically
developing infants were closer to pink noise.

However, this interpretation should be treated with caution. Interpretation of DFA
results in terms of the presence or absence of long range correlationstrbaystraight
forward in all cases, due to limited length of the time series data (Md&Rast),&

Timmer, 2004). One weakness of this study is the time series of 2000 time steps is onl
8.3 seconds. This is a practical limitation of working with infants who may not bagvilli
or able to sit for longer data acquisitions. Postural control mechanisms theteopitin
characteristic time scales longer than 8.3 seconds will not be found in our analysis
Importantly, we found that DFA analysis using higher order polynomial detrending,
rather than linear detrending, resulted in significant differences bhetdresvn noise and
postural sway of both the infants with typical development and the infants with dlelaye
development/cerebral palsy. In fact, the infant sitting postural sway wasdifterent

from Brown noise, both for infants with typical development and infants with delayed
development. The variance of Brown noise increases with increasing lenigéntiohé
series without bound. The variance of postural sway cannot increase without bounds,
because the result would be a fall. Thus one would expect to find differencesrbetwee
postural sway data and Brown noise, and the fact that detrending with higher order
polynomials was sensitive to that difference shows the strength of thisgee. Any
analysis technique that cannot distinguish between infant sitting postural sway and
Brown noise is lacking sensitivity to a fundamental aspect of motor control. A

significant result of this study is that detrending with polynomials of diffeveders
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when performing DFA analysis can provide additional insight that the linear detgendi
by itself can not provide.

Another way to interpret these results is to note that the detrending wasdepor
to remove nonstationarity (Peng, Havlin, Stanley, & Goldberger, 1995), and thus one
could describe the infants with delayed development/cerebral palsy as hafenendif
characteristics of the nonstationarity, as compared to infants with ltgpie@lopment.
Often nonstationarity is conceived of as a drift in the measurement over tingeribat
part of the system dynamics that one is attempting to characterize. Howenewdle
not a drift in the experimental apparatus giving rise to nonstationarity in gsdesr
Any “nonstationarity” that the detrending is removing, is a biological noostatty. It
was influencing the infant’s motor control system, or was part of the motootontr
system, and thus may have been affected by the underlying pathology in the motor
control system. For example, we may speculate that the infant’s attenyashiftdrom
one object to another, impacting motor function, and this shifting of attention may be
different between the two populations. A cognitive task has been shown to influence
posture control in adults and even more so in younger children (Reilly, van Donkelaar,
Saavedra, Woollacott, 2008). An interesting topic for future research is plaetiof
cognitive function on infant motor control. The use of polynomials of different order for
detrending has discovered interesting differences in the system dynammfats
sitting, but further work is necessary to fully interpret the results.

One goal of this work was to develop a clinically useful methodology to
objectively distinguish between infants with cerebral palsy and infants who are

unaffected. We would like to develop a methodology that is sensitive enough to provide
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early identification of infants with cerebral palsy, and to assist pHybeapists with
evaluation of the effectiveness of specific interventions. Here we hpeded that DFA

has shown statistically significant differences between the two popultt@nse

analyzed. However, the differences between the two populations are not wida &mou

be used for clinical identification of pathology. In other words, there is quiteod bi

overlap between the DFA alpha values for the two populations studied. Future work will
include other data analysis methods capable of probing nonlinear dynamics of infant
sitting, as well as the application of more sophisticated classificatithodsebased on

the results of multiple data analysis methods.

In summary, this work has demonstrated that DFA analysis of infant sitting
postural sway is sensitive to differences in developmental delay. A majardiwas that
the use of higher order polynomials for the detrending step in the DFA algorithmdelps
distinguish infant sitting posture COP from Brown noise. Another major finding \aas th
DFA analysis using the standard linear detrending method is the most sensitive to
differences between sitting postural sway of infants with delayed dewetdfcerebral
palsy as compared to infants with typical development. Future work is needed to
increase the sensitivity, specificity, and reliability of the measused for analysis of
postural control, in order to make this approach clinically useful for identdicafi
infants with developmental delay, and for characterization of effectivehéssrapeutic

interventions.
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Table 5.1. Alpha values for DFA analysis of infant sitting postural sway aheng t

medial-lateral axis.

Polynomial Order

1 2 3 4

DFA alpha values calculated from linear fit of In(F) vs. In(n)
Typical Development (n=23)
Mean 1.44 1.62 1.65 1.62
Standard Deviation 0.09 0.15 0.15 0.15
Delayed Development/Cerebral Palsy (n=18)
Mean 1.47 1.66 1.69 1.65

Standard Deviation 0.11 0.16 0.18 0.17

DFA alpha values calculated from center of In(F) vs. In(n)
Typical Development (n=23)
Mean 1.42 1.95 2.19 2.24
Standard Deviation 0.18 0.25 0.25 0.25
Delayed Development/Cerebral Palsy (n=18)
Mean 1.53 2.04 2.27 2.30

Standard Deviation 0.18 0.25 0.28 0.29
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Table 5.2. Alpha values for DFA analysis of infant sitting postural sway aheng t

anterior-posterior axis.

Polynomial Order

1 2 3 4

DFA alpha values calculated from linear fit of In(F) vs. In(n)
Typical Development (n=23)
Mean 1.33 1.50 1.57 1.58
Standard Deviation 0.15 0.17 0.16 0.15
Delayed Development/Cerebral Palsy (n=18)
Mean 1.47 1.64 1.67 1.64

Standard Deviation 0.12 0.14 0.18 0.20

DFA alpha values calculated from center of In(F) vs. In(n)
Typical Development (n=23)
Mean 1.22 1.59 1.89 2.08
Standard Deviation 0.23 0.32 0.33 0.33
Delayed Development/Cerebral Palsy (n=18)
Mean 1.47 1.88 2.08 2.16

Standard Deviation 0.19 0.22 0.22 0.27
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Table 5.3. Alpha values for DFA analysis of computer generated (synthedighBr

noise.

Polynomial Order

1 2 3 4

DFA alpha values calculated from linear fit of In(F) vs. In(n)
Brown Noise (n=25)
Mean 1.50 1.49 1.48 1.48

Standard Deviation 0.10 0.07 0.07 0.06

DFA alpha values calculated from center of In(F) vs. In(n)
Brown Noise (n=25)
Mean 1.52 1.52 1.47 1.48

Standard Deviation 0.13 0.12 0.13 0.10
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Table 5.4. Results of independent t-tests comparing DFA alpha values for pagaiyral s

along the medial-lateral axis.

Polynomial Order

1 2 3 4

Results using DFA alpha calculated from linear fit of In(F) vs. In(n)

TD vs CP -1.06 -0.87 -0.91 -0.57
Brown vs TD 2.10 -3.62* -4.99* -4.39*
Brown vs CP 1.70 -4.24* -4.29* -3.33

Results using DFA alpha calculated from center of In(F) vs. In(n)

TD vs CP -1.89 -1.17 -1.03 -0.72
Brown vs TD 2.49 -6.90* -12.22* -13.15*
Brown vs CP -0.53 -7.95* -10.78* -11.13*

Note. *p < .001
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Table 5.5. Results of independent t-tests comparing DFA alpha values for pagayral s

along the anterior-posterior axis.

Polynomial Order

1 2 3 4

Results using DFA alpha calculated from linear fit of In(F) vs. In(n)

TD vs CP -3.27 -2.76 -1.82 -1.19
Brown vs TD 4.63* -0.30 -2.63 -2.90
Brownvs CP 1 0.67 -4.14* -3.81* -2.95

Results using DFA alpha calculated from center of In(F) vs. In(n)

TD vs CP -3.85* -3.26 -2.09 -0.85
Brown vs TD 5.86* -0.73 -5.59* -8.09*
Brown vs CP 0.51 -5.95* -9.79* -9.80*

Note. * p <.001
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lateral results, bottom plot (b) shows ante-posterior results.
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CHAPTER 6
SENSORY INFORMATION UTILIZATION AND TIME DELAYS
CHARACTERIZE MOTOR DEVELOPMENTAL PATHOLOGY IN

INFANT SITTING POSTURAL CONTROL

Abstract:

Sitting is one of the first developmental milestones that an infant achieves. Thus
measurements of sitting posture present an opportunity to assess sensorimotor
development at a young age, in order to identify infants who might benefit from
therapeutic intervention, and to monitor the efficacy of the intervention. Sittitigrabs
sway data was collected using a force plate, and the data was used to tuaal a ne
network controller of a model of sitting posture. The network was trained with data fr
infants with cerebral palsy, and data from infants without cerebral, gmdtty for early
sitting (as soon as they could sit for about 10 sec), and late sitting (a few maarhs lat
The trained networks were then probed for sensitivity to position, velocity, and
acceleration information. Late sitting for infants with typical developrhadta higher
reliance on velocity information in control in the anterior-posterior axis, angeatil
more types of information in control in the medial-lateral axis, perhaps tiveicd
lower stability along the medial-lateral axis. The use of velocity inédion for control
in the anterior-posterior direction may emerge independently in both typicat siféng
and in typical adult standing, as an efficient means of control for those particular

postures, given the anatomical and physiological constraints of each of thtesassy
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Infants with delayed development, where the developmental delay is due talcereb
palsy for most of the infants in the study, did not develop this reliance on velocity
information. Infants with delayed development have less reliance on shori/lateniml
mechanisms compared to infants with typical development, apparently ndcesaita
adaptive switch to other longer latency control mechanisms in the infants witlyetéle
development.

Introduction

Cerebral palsy is due to a brain injury that occurs early in life, witerebral”
indicates involvement of the cerebrum, and “palsy” indicates a movement disorder. Thus
impairment in motor function is a hallmark of the disorder, but impairments in sensory
function are also prevalent, perhaps as a result of injury to thalamocpédibalays
(Hoon, et al., 2009). Sensory impairment can include proprioception (Goble, Hurvitz, &
Brown, 2009) and cutaneous sensation (Lesny, Stehlik, Tomasek, Tomankova, &
Havlicek, 1993; Sanger & Kukke, 2007), and sensory deficits and/or deficits inysensor
integration likely contribute both to impairment in motor performance (Bumin &
Kayihan, 2001; Bumin & Kavak, 2008; Hadders-Algra, van der Fits, Stremmelaar, &
Touwen, 1999) and motor development (Wilke & Staudt, 2009). Sitting is an important
motor control skill that infants learn early in life, at about age 6-8 monthseSiinig
allows the infant to reach for objects in his environment, and allows visual inspection of
the environment. Additionally, sitting is a major developmental milestone. snfdrd
do not learn to sit by age 2 years, typically never learn to walk (Fedrizti, 2000).

Thus sitting is not only important in itself, but can serve as a window into the
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sensorimotor system of the developing infant, and provide insight into deficits in motor
control in infants with developmental delay.

The control of sitting posture, like standing posture, requires maintaining the
center of mass within the base of support. In order to achieve this goal botimgnesitt
standing, information from various sensory modalities, including visual information,
vestibular information, proprioceptive information, and cutaneous information, isaused t
provide feedback for various postural control mechanisms (Horak, 2006). Much of the
research on postural control in standing is focused on understanding the contributions of
these different modes of sensory information, which is accomplished by blocking or
altering various sensory modalities, such as closed eyes/open eyes toate/éistig
importance of vision in postural sway (Kiemel, Oie, Jeka, 2002), altering visual surround
movement to provide false visual information (Peterka, 2002), using vibration to alter
touch information to investigate the importance of cutaneous sensory input (Kieepel, O
Jeka, 2002), or use of galvanic stimulation to investigate vestibular function in postura
sway (Ali, Rowen, & lles, 2003). However, when one sensory modality is altbeed, t
information from other modalities is used more for control; i.e. sensory rewggjghti
occurs such that the control dynamics may not be representative of the contratdynam
under more typical conditions. For example, in normal adult standing, about a third of the
information used for control is from visual information (Peterka, 2002), but in the
blindfolded condition used as an experimental manipulation of sensory input for postural
control, vestibular information and proprioceptive information become more heavily
weighted (Horak, 2006). A different strategy in the study of postural control pplp a

mechanical perturbations to the subject, and characterize the response, to gaimiosight
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the postural control mechanism. Perturbation methods have been applied to adult sitting
(Granata, Slota, & Bennett, 2004) and to infant sitting (Harbourne, Giuliani, &aNeel
1993; Hedberg, Carlberg, Forssberg, & Hadders-Algra, 2005; Hedberg, Forssberg, &
Hadders-Algra, 2004; Hirschfeld, & Forssberg, 1994). These studies chaeatheri
response to extreme events that may not represent typical control rsethani
unperturbed sitting. For example, stretch reflexes might be triggerediiong s
perturbation during sitting (Granata, Slota, & Bennett, 2004), but it is not abeauttiat
result whether stretch reflexes are important in control of unperturbed.sitite
understanding sensory reweighting and response to external perturbationsoatanin
goals, it is also important to understand normal postural control, i.e. postural control
without experimentally altered sensory input or external perturbations. Npostaral
control serves as a baseline with which to compare experimental manipulations of
postural control, and is relevant to postural control in many everyday situationst iBhus i
desirable to develop methods to study normal postural control, and analysis of tenter o
pressure (COP) data from unperturbed sitting with no sensory manipulation is lone suc
method, and it is the method we have chosen to investigate infant sitting.

The mechanism for control of upright posture is not known, but a leading
hypothesis is that a control parameter is the time to contact of the peminierbase of
support (Slobounov, Cao, Jaiswal, & Newell, 2009). In order to calculate the time to
contact parameter, position, velocity and acceleration information must be known. The
various sensory modalities provide different types of sensory information. Visual
information may include position, velocity and acceleration (Thiel, GrescBoech,

Ammermiuller, & Kretzberg, 2007). The vestibular labyrinth is particulsuited to
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sensing acceleration information (Kandel, Jessel, & Schwartz, 2000, p. 802-803).
Proprioceptive feedback includes position, velocity and acceleration information
(Schouten, de Vlugt, van Hilten, & van der Helm, 2008). Stretch receptors in the skin
also contribute information for postural control (Kandel, Jessel, & Schwartz, 2000, p
443). These multiple modes of sensory information must be interpreted and itégrate
the central nervous system in order for postural control mechanisms to maintam uprig
posture (Horak, 2006). While estimations of position information, velocity information,
and acceleration information are all available from integrated sensoryiinputpt
known which information is actually used for infant sitting postural control. Velocity
information is thought to be more accurately estimated than position or acoelérmatn
sensory input, and that it is the predominate type of information used for standing
postural control in healthy adults (Jeka, Kiemel, Creath, Horak, & Peterka, 2464). |
unclear if infant sitting postural control can benefit from relying moreihean the
more accurately estimated velocity information, compared to position oeeatteh
information, or if the time-to-contact calculation requires equal use of a# thpes of
information. Additionally, it is not known if infants with developmental delay will use
the same types of sensory information on a delayed developmental scheduleyor if t
will adaptively find alternate ways to use sensory information to compesate f
sensorimotor deficits.

Postural control, just like any motor control task, is accomplished by contraction
of the appropriate muscles at the appropriate time. If sensory information ésdacat
acceleration in a particular direction is needed, then a motor command is éxecute

provide that acceleration. At a given point in time, the sensory system mayy dete
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position, velocity, and acceleration information, but there is a time lag before tha
information can be acted upon. The time lag is due to nerve conduction time for the
sensory information to flow to the central nervous system (CNS), processhmay of
sensory signal by the CNS, motor command flow back to the muscle, and muscle
activation time. There are a range of delay times that have been measurdt in a
postural control, including stretch reflex time delay with a latency on the ordéoat

30 msec and rise time of about 70 msec (Granata, Slota, & Bennett, 2004), vestibular
control time delay on the order of 60-100 msec (Ali, Rowen, & lles, 2003), and visual
control time delay on the order of about 500 -750 msec (van den Heuvel,
Balasubramaniam, Daffertshofer, Longtin, & Beek, 2009). Multiple postural control
mechanisms exist (Horak, 2006), resulting in multiple time scales associtied w
postural control, as the various control mechanisms have different time deloysgsl
with them. Thus time delay is a critical parameter in analysis of postuegl data. In
investigating how infants utilize position, velocity, and acceleration infoomait is
necessary to also investigate the time delay associated with theiatiliagthat
information.

Conceptually, to maintain upright sitting posture, a control signal is
generated by biological neural networks within the central nervous systénsemnsory
information as the input. The output of the biological controller is a motor control signal
that initiates muscle activation. Muscles produce forces and joint torques, wich a
proportional to accelerations via Newton’s second law, often written as F=ma for
system of constant mass. Due to finite nerve conduction velocities and musettoact

response times, there is a time delay between the activation of sensory newtding, a
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acceleration of the body that occurs following the sensory input. Thus the biological
system is has sensory input from which, after sensory integration, includesrpositi
velocity and acceleration information, and the output is a muscle activationubas@n
acceleration at time delay As a model of the biological control system in this work, we
will use a simple artificial neural network (ANN) controller. The input toANN is
position, velocity and acceleration at time t, and the output is an acceleratiogn &tr.

By training the ANN with position, velocity, and acceleration information form
experimental COP data from infant sitting, and then probing the response of theknetw
with a sensitivity analysis, the importance of position, velocity and actietera
information to the postural control can be evaluated. We hypothesize that infants wil
utilize velocity information more than position or acceleration information fongit
postural control, based upon velocity information utilization in adult standing postural
sway (Jeka, Kiemel, Creath, Horak, & Peterka, (2004) We also hypothesizs imidmt
delayed development will utilize sensory information differently compgréafants

with typical development, rather than simply being delayed in development. Thisd
hypothesis is based on sensory deficits in infants with cerebral palsy, whignianise

the majority of the sample with atypical development.

Methods
2.1. Infant participants and data collection
Thirty infants with 30 developmental delay (age=14.05 months, std=5.33 months,
for early sitting and age=18.06 months, std=5.09 months, for late sitting) and 33 infants

with typical development(age=4.92 months, std=0.57 months, for early sitting, and age =
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7.92 months, std=0.60 months, for late sitting) participated in the study. Recruitnsent wa
done through newsletters, flyers, and pediatric physical therapists euhplotye
University. Infants in the developmentally delayed group were diagnosed vetiraler
palsy, or else were developmentally delayed and at risk for cerebral @alsyning a
firm diagnosis of cerebral palsy at this young age is often not possibleidgeza
definitive diagnosis of cerebral palsy had not been made, we refer to thede asfa
developmentally delayed, because all scored below 1.5 standard deviations below the
mean for their corrected age on the Peabody Gross Motor Scale (Folioe8l, Z800).
However, the development is likely not just delayed, but also atypical (Chen &
Wollacott, 2007). A consent form was signed by a parent or guardian of all infant
participants, and all procedures were approved by the University of NebradiaaMe
Center Institutional Review Board.

Inclusion criteria for entry into the study for the typically developifgnts were:
a score on the Peabody Gross Motor Scale of greater than 0.5 SD below the mefan, age o
five months at the time of initial data collection, and sitting skills as degdoélew in
beginning sitting. Exclusion criteria for the sample of infants who areaiyic
developing were: a score on the Peabody Gross Motor Scales less than 0.5 SD below the
mean, diagnosed visual deficits, or diagnosed musculoskeletal problems. dadlyypi
developing infant was found to be less than 0.5 SD below the mean, and did not qualify
for the study, the parents were informed of the score, the possibility of error in the
measurement, and advised to have the infant re-evaluated within the next 3 months.
Operational definitions of beginning sitting were used to determine the chadimess

for entry into the study. Beginning sitting was defined as (a) head controlnsiahhten
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trunk is supported at the mid-trunk, head is maintained for over one minute without
bobbing; (b) infant can track an object across midline without losing head control; (c)
infant may prop hands on floor or legs to lean on arms, but should not be able to reach
and maintain balance in the prop sit position; (d) when supported in sitting can reach for
toy; (e) can prop on elbows in the prone position for at least 30 seconds. Each infant was
tested when they entered into the study based on the ability to sit for about 10 sec, and
then again 3-4 months later.

For the infants with developmental delay the inclusion and exclusion criteria were
as follows. Inclusion criteria were: age from five months to two yearsg $&ss than 1.5
SD below the mean for their corrected age on the Peabody Gross Motor Swhles, a
sitting skills as described above for beginning sitting. Exclusion criteara:vage over
two years, a score greater than 1.5 SD below the mean for their corrected age on the
Peabody Gross Motor Scale, a diagnosed visual impairment, or a diagnosed hip
dislocation or subluxation greater than 50%.

For all data collection sessions, the infants were allowed time to get used to the
laboratory setting, and were at their parent's side or on their lap for preparad data
collection. All attempts were made to maintain a calm, alert staadidwing the infant
to eat if hungry, be held by a parent for comforting, or adapting the temperatiee of
room to the infant's comfort level. A blanket was placed over the plate for wanthth a
was securely adhered with double sided tape on the ground. The baby was held in the
sitting position in the middle of the plate to start. Once the examiner could cely et
go of the infant, data were collected for 10 seconds while the child attempteohtaima

sitting postural control. Trials were performed until we had collected tha¢é® or until
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the infant was no longer interested in sitting, i.e. was crying or agitatedaltdnot be
calmed. At any time the child became irritated; the session was haltsahiforting by
the parent or a chance for feeding, and then resumed only when the child was again in a
calm state. We attempted to collect three trials at each of the twonsg$sit could not
always get that many, depending on the infant’s behavior.

For data acquisition (Figure 6.1), infants sat on an AMTI force plate (Watgrtow
MA), interfaced to a computer system running Vicon data acquisition softwake (L
Forest, CA). Center of pressure (COP) data were acquired at 240 Hz using the Vicon
software. Trials were recorded including force plate data and video datehdradk
and side views. Afterwards segments were selected by viewing thepoomesy video.
Segments of data with 2000 time steps were selected from these tealksnbiypation of
the video. Acceptable segments were required to have no crying or long vamalinati
extraneous items (e.g. toys) on the force platform, neither the assistémt noother
were touching the infant, the infant was not engaged in rhythmic behaviordpmnd
arms), and the infant had to be sitting and could not be in the process of falling.
Calculation of position, velocity and acceleration from COP data

The time delay in a sensory feedback system is an important paranreteth®
goal is to model actual infant sitting, the delay from one time step to thehoexd He
appropriate for human motor control. The data in this study was acquired at 240 Hz,
meaning there were 240 data points collected each second, or a time lag of 4.2 msec
between points. In order to investigate time lags of different lengthsiteeeries data
was sectioned into non-overlapping windows sized from 33 msec (8 data points) to 750

msec (180 data points). Position data for each window was calculated as the average
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position for that window. Velocity data was calculated by differencing théigosiata
in that window, and calculating the average, and similarly differencing theopodata
twice and averaging gave the acceleration for that window. For exampleyiiod@wv of
33 msec, each COP position time series was broken into segments with length of 8 data
points. Averaging these points gave an estimate of the position for that 33messtep.
Differencing the 8 points and averaging the resulting 7 points gave the velocity
estimation for that time step. Differencing twice and averaging the sispgave an
estimation of the acceleration for that time step. Thus from the original émes,ghree
time series were calculated: position time series, velocity timessemd acceleration
time series.

Because the effect of the three different information types were to lmaoced)
all of the input data to the model needed to be comparable in magnitude for the
comparison to be meaningful. Each point of the position data was then normalized by
subtracting the mean and dividing by the standard deviation for all position data.
Likewise, all the velocity data was normalized using mean and standard deviation for
velocity, and acceleration data normalized using mean and standard deviation for
acceleration. The normalization process was used in order that each type ofidata ha
mean of zero and a standard deviation of 1, and thus the weights from the ANN would be
related to the importance of that type of information, and not influenced by theliffer

units on position, velocity and acceleration.

Neural network model
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A simple neural network model was created with Graes in the input layer, one
each for position, velocity, and acceleration;dden layer with 6 neurons, and an output
layer with one neuron (Figure 6.2). All neuronsdiaesimple sigmoidal function for
activation (Duda, Hart, & Stork, 2001), which hasaatput of [0, 1], so the acceleration
for comparison with the model output was normalilete in the range [0,1]. Each
neuron in the model summed the input from the ghecelayer, and then used the

following sigmoidal function to compute the output:

1
f(net)=

e—c -neg

wherec is a steepness parameter, that was set equaé timothis model, and nes the
summation of input to the neuron j. The output sfganoid neuron is between zero and
one, so all the desired output calculated fromirifent posture data was scaled to be
between zero and one.

Back propagation of error was used to train thevagk, where error
calculated in each time step was back-propagateedan the current weights of the
network, allowing new weights to be calculated (Budart, & Stork, 2001). Initial
weights were randomly generated. Iteration wasiteatad when the error reached below
a threshold value, and if the algorithm did notvange, new random weights were
chosen, and the training repeated. The networkinaaged using the inputs position,
velocity and acceleration at time (t), and trait@dalculate acceleration at the next time
window (t+1). The contribution of position, velogi&nd acceleration were ascertained by
propagating [p,v,a], through the trained networkgeve p is a position value, v is a

velocity value, and a is an acceleration value.é¢x@mple, propagation of [1,0,0]
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through the trained network results in an outpat thdicates the response of to a
positive position, and neutral velocity and acaien, i.e. what acceleration would the
infant’s muscles and gravity provide if the infavegre leaning 1 standard deviation away
from the mean in the positive direction. The outpiuthe network is in the range [0,1],
where a value of 0.5 corresponds to no acceleratiooutput close to 0 corresponds to a
negative acceleration, and a value near 1 corresptona positive acceleration. In this
manner, for each time series, the contributionasiion, velocity, and acceleration were
determined for each time series by propagationlg® 0], [0,1,0], and [0,0,1],
respectively.

Statistical analysis

A repeated measures ANOVA analysis was performéd2devels of time (early
and late sitting), two axes (anterior-posterior aretlial-lateral), 3 levels of ANN input
(position, velocity, and acceleration), and 11 wawdsizes (spanning 33.3 msec to 750
msec). The between subjects factor was the deveoaingroup, delayed versus typical.
The significance level for the ANOVA was set atradp0.05.

In order to evaluate whether a control effect waseoved, the output of the
network was compared to 0.5 for each group anditoncdombination. The output of
the network is a value between 0 and 1, with aeval0.5 being the neutral output of the
network, i.e. 0.5 indicates no acceleration inrtegt time step. An output significantly
above 0.5 indicates acceleration in the positiveation in the next time, and an output
significantly below 0.5 indicates negative accdierain the next time. For a
perturbation, whether it is position, velocity,amceleration, the correct response is

acceleration in the opposite direction in ordecdarect for the perturbation. Since we
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tested the network with a positive perturbatioth@i [1,0,0] for position, [0,1,0] for
velocity, or [0,0,1] for acceleration), the correesponse of the network is a value below
0.5, indicating that the acceleration in the newretstep is in the opposite direction to the
perturbation. Thus one-sided, independent t-tests wsed test whether the output
results were below 0.5. For each window size, itsfavith typical development and
infants with delayed development, at early sittamgl late sitting, in each of two axes
(anterior-posterior and medial-lateral), are evi@ddor the effect of three different types
of posture control information (position, velocégnd acceleration), resultingin 2 x 2 x 2
x 3 = 24 comparisons for each window size usedaBse 11 window sizes were
examined, 24*11= 264 conditions were tested. Watimany conditions, using 0.05 as
the critical alpha value for all these tests wdikdly result in reporting some effects as
significant, when in fact they were due to chafceonservative Bonferroni correction
for multiple comparisons would require setting &tehayiica=.05/264 = .000189, which
is quite difficult to meet. If we had knowledgetbE one best window size for posture
control in infants sitting, then only 24 conditionsuld have been examined, and
alphayiica=.05/24 = .0021 would be used. Because of the exioly nature of this work,
we relaxed the criteria for significance from thenBerroni standard, and we chose to
examine two critical values, alphga=0.01 and alphgica =.0021. To get an idea of the
effect of the relaxed criteria, using an algha value of 0.01 means we expect to reject
the null hypothesis when in fact it is true for ®¥¢the comparisons. For 264
comparisons, we expect about .01*264 = 2.64 corapiasi to appear as significant, even
if the results are actually random. Similarly, &phayiica = 0.0021, we expect about 0.6

comparisons to be evaluated as significant whéaanthey are not.
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Results

The repeated measures ANOVA analysis did not remeakignificant
differences for group, nor did it find a main efféar the repeated measures, day, axis,
perturbation type, or window size. However, witsirbject contrasts found significant
interactions in perturbation type x group (p=.04dipdow size x axis (p=.034), window
size x day x axis (p=.041), window size x axis xyndation type x group (p=.019), and
window size x day x axis x perturbation type x grgp=.014), where the p value shown
represents the best p value for each type of ceinfira., lowest among linear , quadratic,
etc). Note that the last interaction with all 5 ditions and group is significant, and has
the lowest p value, so there is no simple integtiat of these results, as all interactions
must be considered.

To help interpret the interactions, there is antamthl consideration about the
results that will be helpful, namely that the comg@n of the neural network output to
the neutral value of 0.5 for each condition. Thgpatof the network is a normalized
acceleration, with a value ranging from 0 to 1, vehe value of O indicates a maximum
acceleration in the negative direction, a valu& ofdicates a maximum acceleration in
the positive direction, and a value of 0.5 indisate acceleration in response to the
input. If the network is tested with a positive tpebation, the appropriate response is in
the negative direction, i.e. in the opposite digetto the perturbation, which corresponds
to an output significantly less than 0.5 If theputof the network for a positive
perturbation is not significantly less than 0.5ttwait time lag and input perturbation type

(i.e. position, velocity, or acceleration), thatlicates that the time lag/information type
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combination is not contributing significantly tordool. One-sample t-tests were used to
compare the output for each condition to 0.5, fuis designed to test the trained
networks sensitivity to position [1,0,0], veloc[ty,1,0], and acceleration [0,0,1] (Table
6.1). The tests were two-sided t-tests, but themwalues for all conditions that are
significantly different than 0.5 are less than @&nsistent with the output of the network
having useful control functionality. Using a criteof statistical significance of 0.01, 44
conditions/group combinations were found to beificantly lower than 0.5, out of 264
tested, compared to only about 3 combinations wbaldxpected to be significantly
different if the results were random. Using a cidt®f statistical significance of 0.0021,
11 conditions/group combinations were found toigaiBcantly lower than 0.5, out of
264 tested, compared to only about 1 combinatiouldvbe expected to be significantly
different if the results were random.

The significant results (Table 6.1) were organizgdroup, day, and axis (Table
6.2) to facilitate comparisons. Typically develapinfants have a wide range of time
windows contributing to control in the medial-latkaxis. Additionally, position,
velocity and acceleration are all contributing tmtol in the medial-lateral axis for
infants with typical development. In contrast, #rerior-posterior axis for late sitting for
infants with typical development is very dependamt/elocity information. The infants
with delayed development have no short time windowtributions to control, as there
are no significant contributions from time windolgss that 100 msec for infants with
delayed development, and for late sitting no sigaift contribution from a time window
less that 250 msec. Additionally, infants with geld development have more equal

lag/information types contributing to control fdret anterior-posterior axis and medial-
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lateral axis, compared to the infants with delagedelopment who have more in the
medial-lateral axis and fewer in the anterior-poeteaxis.
Discussion

Our first hypothesis was that velocity informatiwould be more heavily used in
infant sitting posture control. We found this tothee, but only for infants with typical
development, and then only for control in the aoteposterior axis for late sitting. That
late sitting should use velocity information moesbiily is consistent with the sensory
integration capabilities of the infants becomingrennearly adult like later in
development. In adult standing posture controla,J&kemel, Creath, Horak, and Peterka
(2004) find that velocity information is more helguised than position or acceleration.
They point out that the proprioceptive, cutaneamns], visual systems are all velocity
sensitive, due to the sensor physiology being reensitive to changes in position rather
than absolute position. They mentioned that théilméar system, a source of
acceleration information, is relied on under caondi where sway referenced support has
altered normal sensory input. They argue that undenal postural sway conditions, the
vestibular system is likely not sensitive enougldatribute greatly to postural control.
However, the study by Jeka, Kiemel, Creath, Hoazkl Peterka (2004) only examined
control in the anterior-posterior axis due to they platform being used allowing tilt in
only one direction, and their study does not addoesitrol in the medial-lateral axis. Just
because velocity is more heavily used for contf@dult standing posture in the anterior-
posterior axis, does not imply that the same is inuthe medial-lateral axis, as sensory
information is used differently for control in th&o different axes. For example, a study

by O’Conner and Kuo (2009) found that normal adtdhding postural sway is more
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influenced by visual perturbations in the anteposterior axis than in the medial-lateral
axis, while the sensitivity is higher in the medgtieral direction if the feet are placed in
tandem rather than side-by-side. As infants leaittthey must learn to appropriately
use sensory information based on task demands.

Our second hypothesis was that infants with devetygal delay use sensory
information differently than infants with typicaédelopment. The infants with
developmental delay were found to lack the shoretdelay contributions to posture
control that the infants with typical developmeertribnstrated. Infants with
developmental delay were found to not simply beyksd in the development of sitting,
but were less able to utilize short latency sengsdormation in postural control than
infants with typical development, instead relyinglonger delay time mechanisms for
postural control. One short delay time control natdm that might be used in postural
control is the stretch reflex (Granata, Slota, &Bett, 2004). Infants with spastic
cerebral palsy have altered stretch reflex actiitgl greater stiffness of the
musckuloskeletal system, and thus this mechanisynnoiabe as useful for postural
control for infants with cerebral palsy comparednfants with typical development.
Perhaps an adaptive strategy for maintaining uppghkture for infants with altered short
latency control, possibly altered stretch reflexes more complete reliance on higher
level control mechanisms, which necessarily halger delay time. With a reduced
number of postural control strategies available,rttotor control system has fewer
synergies to invoke, so the motor control develaprbecomes atypical as well.

Children with cerebral palsy have been found teehevincreased time to

produce a given amount of force in lower extremityvements (Downing, Ganley, Fay,
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& Abbas, 2009), and patients with dystonia haveveloreaction times in a visual
stimulus and button-pushing task (Jahanshahi, R&eiller, 2001). The slow response
time of the neuromuscular control system, and #eessary reliance on longer time lag
control mechanisms, has important implicationspstural control. One model of
postural control is the inverted pendulum modelergha mass remains positioned above
the ground on a vertical rod due to actuators otlett by a feed back controller. If the
delay time of the feedback controller exceedstecafitime delay, then the upright
position cannot be maintained. The critical timgiien by: t= sqrt(2*L/3*g), where L is
the distance from ground to the center of maskependulum, and g is the acceleration
of gravity, which works out to 260 msec for aduw#trsling (Milton, Cabrera, Ohira,
Tajima, Tonosaki, Eurich, & Campell, 2009) . Frdmstformula, the critical delay time
for control of an inverted pendulum depends orsihe of the pendulum, with taller
pendulums able to be controlled using slower respdimes. For an infant, with a center
of mass about 20 cm above the ground, the critimadrol time is 117 msec. None of the
significant control time delays for infants withlaged development meet this criterion
(Table 6.2). While the inverted pendulum is a vemyde model of infant sitting postural
control (Kyvelidou, Stuberg, Harbourne, Deffeyelarike, Stergiou, 2009), and ignores
what are likely important contributions from theseoelastic properties of the infant’s
body as well as the pelvis and spine joints, therited pendulum model suggests that an
infant who is not able to use fast latency comnekchanisms may have a more difficult
control problem to solve than infants with typidalvelopment.

This study investigated control of normal postsahy, where no external

mechanical perturbations are applied, and no sgmrd@ration is used. While an
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important feature of this study is that the resafiply to normal, unperturbed posture
control with normal sensory weighting, a weakndssis study is that the specific
sensory modalities involved in estimation of pasitivelocity, and acceleration can not
be identified. This study used a very simple ANNtodel postural control, which is a
complicated control process with multiple contra@ahanisms interacting to maintain
upright posture (Horak, 2006). The ANN topology htipe improved by inputting
position, velocity and acceleration information foultiple time delays information
simultaneously (larger ANN input layer), or by hayimore processing nodes (larger
ANN hidden layer), or by having output to multipreiscles with various different time
delays (larger ANN output layer). The probes thatuse to test the network sensitivity
to position, velocity, and acceleration were alsp/\simple, but more complex,
nonlinear combinations of inputs might be importantposture control, as might be
expected if the time-to-contact hypothesis (Slolmwii€Cao, Jaiswal, & Newell, 2009) is
correct. A combination of velocity and acceleratinay also be useful for infant sitting
postural control, as muscle activity in adult stagdgostural control has been shown to
correlate with perturbation acceleration and véjo@iVelch & Ting, 2009). Additional
work is needed to address these issues.

Dynamic system theory, as used in the field of traental psychology,
accepts that an important aspect of motor developméhe development of perception-
action coupling, as a result of exploring a wideets of coordination patterns, and
eventually selecting those best suited to a padaticuotor task. Thelen (2000) has
emphasized the close relationship between cogratohaction-perception during

development. An important aspect of perceptiohésdognitive task of sensory
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integration that must occur in order to utilize thirmation content of the sensory input.
Visual, vestibular, proprioceptive, and cutaneaersssry data must be integrated in order
to estimate position, velocity, and acceleratidonmation to be used for posture control.
Although there is no theoretical guidance on wheglosition, velocity, or acceleration
information would be most useful for postural cohtwork with adult standing anterior-
posterior postural control indicates that veloamfprmation is most useful (Jeka, Kiemel,
Creath, Horak, & Peterka, 2004), and we have niotétis work that infants with typical
development utilize velocity information more hdgwn posture control in the anterior-
posterior direction. Thus the infants with typidalvelopment appear to develop towards
using sensory information in a manner similar talbgosture, with the underlying
assumption that the infant is developing on a ttayy that will eventually led to the
adult pattern of use of sensory information. Howetras analysis may be overly
simplistic. There is no reason to assume a limeggdtory in infant development (Adolf,
Young, Robinson, & Gill-Alvarez, 2008). Developmertproprioceptive sensory
integration is not mature even in adolescents (Waligoyeau, & Assaiante, 2009), so
attainment of a fully adult response in infantgmin later sitting, is not likely. Instead,
the use of velocity information for control in thaterior-posterior direction may emerge
independently in both infant sitting and adult sliag, as an efficient means of control
for those particular postures, given the anatonaaodl physiological constraints of each
of those systems. In discussing the anterior-piestand medial-lateral differences in
sensory information utilization in adult standi@Conner and Kuo (2009) stated that
the task direction with the greatest instabilityuges more feedback, and applying this

logic to our results suggests that control in theglial-lateral axis is less stable than the
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anterior-posterior axis, as more types of sensgdrmation are used for control in that
axis, for infants with typical development.

In summary, we find that late sitting for infantghwypical development is
characterized by a high reliance on velocity infation in control in the anterior-
posterior axis, as is adult standing posture cb(leka, Kiemel, Creath, Horak, &
Peterka, 2004), with relatively more complicatedteoal in the medial-lateral axis
utilizing a wider range of information types. Infanwith delayed development who are
younger than 18 months do not develop the samanidion velocity information.

Infants with delayed development have less relimmcshort latency control mechanisms
compared to infants with typical development, ppehdue to altered stretch reflexes or
generally slower sensorimotor dynamics, necessgatn adaptive switch to other longer

latency control mechanisms.
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Results of One Sample t-Tests With the Output @ANN Less than the Neutral Value

of 0.5.
ANN input  Axis Time Window Mean Standard p
(msec) deviation

Typical development (n=33)
position medial-lateral late sitting 33.9.448 0.116 0.0076
position medial-lateral early sitting  83.3 0.412 0.155 0.0014*
velocity medial-lateral early sitting  83.3 0.407 0.173 0.0021*
acceleration medial-lateral early sitting 83.3 0.410 0.164 0.0018*
velocity anterior-posterior late sitting 83.30.431 0.129 0.0023
position anterior-posteriorearly sitting 133.3 0.431 0.157 0.0084
position medial-lateral early sitting 133.3 0.411 0.189 0.0053
velocity medial-lateral early sitting 133.3 0.411 0.198 0.0074
acceleration medial-lateral early sitting 133.3 0.406 0.191 0.0041
position medial-lateral late sitting 133.8.430 0.150 0.0056
velocity medial-lateral late sitting 133.3.425 0.166 0.0070
acceleration medial-lateral late sitting 13328425 0.154 0.0042
position medial-lateral early sitting 187.5 0.410 0.161 0.0016*
velocity medial-lateral early sitting 187.5 0.423 0.160 0.0046
acceleration medial-lateral early sitting 187.5 0.418 0.174 0.0053
position medial-lateral late sitting 250.0.438 0.131 0.0053
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acceleration medial-lateral late sitting 250@433 0.152 0.0080
position anterior-posteriorearly sitting 500.0 0.414 0.153 0.0015*
velocity anterior-posterior early sitting 500.0 0.398 0.172  0.0009*
acceleration anterior-posterioearly sitting 500.0 0.391 0.176 0.0006*
position medial-lateral early sitting 500.0 0.412 0.186 0.0054
velocity medial-lateral early sitting 500.0 0.405 0.178 0.0021
velocity anterior-posterior late sitting 500.0 0.423 0.174 0.0082
position medial-lateral late sitting 750.0.418 0.154 0.0022
velocity medial-lateral late sitting 750.0.418 0.166 0.0040
Delayed development (n=30)
position medial-lateral early sitting 133.3 0.420 0.125 0.0008*
velocity anterior-posterior early sitting 187.5 0.406 0.169 0.0025
acceleration anterior-posterioearly sitting 187.5 0.419 0.172 0.0075
acceleration anterior-posterioearly sitting 250.0 0.428 0.152 0.0070
velocity anterior-posterior late sitting 250.0 0.416 0.167 0.0050
acceleration anterior-posteriofate sitting 250.0 0.420 0.158 0.0046
position medial-lateral late sitting 250.0.413 0.178 0.0060
velocity medial-lateral late sitting 250.M.413 0.179 0.0063
velocity anterior-posterior early sitting 333.3 0.409 0.194 0.0081
acceleration anterior-posterioearly sitting 333.3 0.409 0.177 0.0043
position medial-lateral early sitting 375.0 0.410 0.161  0.0023
acceleration medial-lateral early sitting 375.0 0.410 0.163 0.0025
acceleration anterior-posteriotate sitting 375.00.415 0.153 0.0025
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position anterior-posteriorearly sitting

acceleration anterior-posteriotate sitting

velocity anterior-posterior early sitting
position medial-lateral late sitting
velocity medial-lateral late sitting
acceleration medial-lateral late sitting

500.0 0.424

500.0 0.432

750.0 0.405

750.0.407

750.M®.403

750@396

0.124

0.142

0.171

0.189

0.160

0.174

202

0.0011*

0.0068

0.0024

0.0058

0.0012*

0.0014*

Note: Only conditions with p<.01 are included ie tiable, and * indicates conditions

with p<.0021. The p values are for a one-sidedtweath null hypothesis mean=0.5 for

each condition/ANN input combination. Comparisonthyw>.01 are not shown.
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Table 6.2. Information Type and Window Times (mdec)Significant Output of Infant

Sitting ANN

Delayed development Typical development

Medial-lateral ~ Anterior-posterior Medial-lateral  Anterior-posterior

Early Sitting
P 133* P 500* P 83* P 133
P 375 V 187 P 133 P 500*
A 375 V 333 P 187* V 500*
V 750 P 500 A 500*
A 187 V 83*
A 250 V 133
A 333 Vv 187
V 500
A 83*
A 133
A 187
Late Sitting
P 250 V 250 P 33 V 83
P 750 A 250 P 133 V 500
V 250 A 375 P 250
V 750* A 500 P 750
A 750* V 133
V 750
A 133
A 250

Note. P=position sensitivity of ANN, V=velocity s&tivity of ANN, A=acceleration
sensitivity of ANN. Numerical value is window sizemsec. * indicates ANN output
was significantly different from 0.5 with p<.0024nd values without * were

significantly different from 0.5 with p< .01, agdicated in Table 1.
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Figure 6.1. Postural sway COP data is collectemhasfant sits on a force plate. COP

data was used to train the neural network.
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Figure 62. Model of infant as a sitting on a force plat&hva neural network controlle

Force plate is indicated as a black box that ost@@P data, which

differentiated to get velocity and accelerationssgy information, the input to tf

neural networkThe output of the network is a control signal ithéves muscle

in order to maintain upright sitting posture of théant. We measure COP wi

the force plate to derive the position, velocitydacceleration sensory data

the model, whereas thnfant relies on visual, vestibular, proprioceptiaad

cutaneous sensory input for this informati
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CHAPTER 7

DISSERTATION CONCLUION

Chapter 2 used linear and nonlinear measures tpa@npostural sway of infa
early sitting, and finds significt differences with the largest Lyapunov exponeyH).,
but not any of the other measures, including apprate entropy. The sitting postul
sway of infants with typical development had highgE that the sitting postural sway
infants with delayed deelopment. The LyE calculated from experimentahdata
measure of exponential divergence of nearby trajes of a time series embeddec
phase space. However, these trajectories mustuatbntold back on longer time scal
because the attracta bounded (Figure 7.1), as unchecked exponentiatgince

would result in an unbounded system (Wolf, Swiftiigey, & Vastano, 1985)

=
& 5. i
o~ ! \
T ol 1 — attractor
N —_ .
8 o) — | _— globally
=\ bounded
15.] e local
20 Y exponential
20 = -
o> divergence
o> i
-10 - —~ 20
20 5 10 0 1°
Lorenz(x+tau)

Lorenz(x)

Figure 7.1. The @ractor is globally bouned, even though loc#ldajectories exhibi

exponential divergence.
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As discussed by Wolf, Swift, Swinney, and Vastah@36), the exponential divergence
that is measured in calculation of the LyE is anwch shorter time scale than the period
of the attractor, in order to avoid underestimatimg divergence as the attractor folds
back on itself. Therefore, short time scale evérgshigh frequency in the power
spectrum) contribute more to the calculated Ly tlomg time scale events. While Wolf,
Swift, Swinney, and Vastano (1985) discuss thielation to the sensitivity of the
analysis to experimental noise, the high frequarmyponents in the postural sway data
of infants with typical development not seen in plostural sway of infants with delayed
development (see Figures 4.11 and 4.12 in Chapteas be what is giving rise to the
differences in LyE between these two groups.

In a mathematical system, where the system’s gawgeyuations are known
explicitly, the largest Lyapunov exponent can blewdated analytically from the
governing equations. When calculated from the guugrequations, positive LYyE is
consistent with the system being chaotic, wheregative LyE indicates the system is
not chaotic. However, for the infant postural cohsystem, the governing equations are
not known explicitly, and the LyE can only be esited from experimental time series
data. In this work, the LyE was estimated from eenf pressure data in this work using
commercially available software, the Chaos Datalys®a was used (professional
version, Physics Academic Software; Sprott & Rowkar998), which implements what
is known as the Wolf algorithm for calculation betLyE (Wolf, Swift, Swinney, &
Vastano, 1985). Wolf, Swift, Swinney, and Vastah®85) emphasize that the data used

for the analysis must be sufficient in quantityn@éh of the time series), and quality (not
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have excessive noise) for the algorithm to givemmegul results. The length
requirement for the time series is based on thd teeontain several orbital periods, and
thus the length requirement for the time serieeddp on the dynamics of the system
under study, and Wolf, Swift, Swinney, and Vast&t@85) find that 18to 3¢ data
points are required, where D is the dimension efattractor. Again, we cannot directly
calculate the dimension of the attractor for infsitting postural control because the
governing equations are not known. We can onlyrege a dimensionality of the system
from the data. One estimate of attractor dimensdhe correlation dimension, and as
reported in Chapter 2, we found a correlation dism@mof about 4.2. The required time
series length, based on this estimate of the &trdimension, is at least 40or 15,849
data points are required. Here we should notettiestimate of the required number of
data points is based on the available data. Thissunknown if the actual dimension is
4.2. It is possible that it will be higher or lowétowever, Grassberger and Procaccia
(1983) find that the correlation dimension is adjiestimate of the attractor dimension if
the time series is long enough, but may underegtith@ attractor dimension if the time
series is too short. Thus the requirement of 15,@&ta points is likely a conservative
estimate of the length of the time series needed.

The infants are not able to sit for extended periofdtime, and our data
collections resulted in time series that were 200@ steps (N=2001), or 8.3 seconds of
data collected at 240 Hz. Of course, collecting@d 2400 Hz for 8.3 seconds of sitting
would have resulted in 20,000 time steps, apparemtleting the requirement of 15,849
data points. Furthermore, increasing the samphig tenfold does not provide an

increase in length of time the system dynamicgithe series, and thus could not be an
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appropriate solution to the time series length ireguent. As a simple example, consider
studying the dynamics of a sine function with aqubof 2 seconds, i.e. a frequency of
0.5 Hz. The Nyquist criterion requires samplindeaist 4 data points in those 2 seconds
(i.e. sampling at 1 Hz is the minimum for a 0.5dignal). For spectral analysis sampling
rates higher than the Nyquist criterion presenprablem, other that the extra data
storage requirements for the longer time serieslé/e Nyquist criterion is widely
accepted as determining the minimum necessary sagnple for spectral analysis
(sometimes called the Nyquist-Shannon criteriad,nttathematical proof of the Nyquist
sampling criterion requires data to cover a congpbetriod (Shannon, 1949). Simply
sampling at a very high sampling rate, and obtgiitime series with a certain number
of data points does not allow characterizatiorhefgystem dynamics if the time series
does not sample for at least one period of thefsimetion. For the example of the 0.5 Hz
sine function with a period of 2 seconds, mentiocalkove, sampling at a very high
sampling rate for 0.2 seconds will not provide sadition of the system dynamics,
regardless of how many data points are collectedan0.2 seconds. The requirement
for the LyE using Wolf’s algorithm is even more se, in that multiple cycles are
needed, because divergence values from multiplesyre averaged in order to
minimize the effect of noise on the estimate. fdwuirement of 15,849 data points for
the length of the time series cannot be met sirbplincreasing the sampling rate, but
that leaves open the question of what samplingstatelld be used.

The sampling rate for nonlinear analysis has aulthii considerations as
compared to spectral analysis, because it nedaks ltmwv enough that the system evolves

sufficiently from one measurement to the next. \W8ikift, Swinney, and Vastano
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(1985) suggest looking at delay plots (Figure ar&j visually determining if a given
delay time has sufficiently opened up the attra@erthe attractor will appear as a line on

x=y (or a line on x=y=z in three dimensions) if theay is too low.
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Figure 7.2. Delay plots for infant sitting time &= at various lag values.

While the delay plots indicate that a lag less thlaout 40 is not unfolding the
attractor enough, it is not clear which time lapeést. Additionally, if the data has a
dimension greater than 3, this method could leagtm@neous conclusions, since higher
dimensions cannot be visualized. Based on thelatioe dimension data reported in

Chapter 2, the dimension of this data might be Higiner, so we might suspect that a two
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dimensional plot is not appropriate for judging unfolding of the attractor for this dé
set. Another method that can be used to is tcheed¢lay time based on the lag valu
which the autocorrelation function reach«-1/e of its maximum value (Rosenste
Collins & DelLuca, 1992). This method es a median value of about 40, althougt

some time series the values are much higher (Fig3i

Lag for Infants with TD; median=37 Lag for Infanks with CF; median=42

350

Count
Caunt

0 50 100 150 200 i} 50 100 150 200
Lag Lag

Figure 7.3 Histograms of lag valu (t) at which autocorrelation functic falls below
1-1/g for sitting COP data for infants with typical ddgpmet (left) and infants witl
delayed development (rig.

If a lag value of 40 is to be used for the infatitrgy data with the Wol
algorithm, as implemented in the software ChaosBaialyzer (professional versic
Physics Academic Softwe; Sprott & Ravlands, 1998), then the data must be di
sampled from a time series of 2000 time stepstiime series of just 50 time steps, wh
now each time step is lag 40/ 240 Hz= 166 msee nit result is that the 8.3 second

infant sitting data that was quired for each infant sitting trial provides j&t date

points, compared to the conservative estimatelth®49 data points are needed. Be
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on this approach, to acquire 15,849 data poinéslag of 166 msec, the infants would
have to sit for 2631 seconds, or over 40 minutéscinvis beyond the capability of most,
if not all, of the infants in our study. Even iktinfants could sit for this long, the
dynamics of the postural control would likely charduring these 40 minutes due to
fatigue, so nonstationarity of the signal would poomise the outcome. Based on this
analysis, further calculations with the LyE weré porsued.

Despite these limitations, the result from the lartalysis presented in Chapter 2
is intriguing, because this algorithm did deteftedences between the postural sway of
infants with delayed development and infants wyhidal development. However,
interpretation of the LyE in the same manner asyéinally determined LyE, as an
indicator of mathematical chaos, is troublesomegmithat the data is so far away from
meeting the criteria that the algorithm was dedigioehandle (Wolf, Swift, Swinney, and
Vastano, 1985). With this limitation in mind, wieasild point out that this does not
undermine the results of Chapter 2 but we sugbesthey should be interpreted with
caution if conclusions of chaos are to be madefé#lkthat conclusions on amount of
divergence of the trajectories are safer and tlaene la more functional importance.

Entropy measures are thought to be more robustadtiean nonlinear measures to
shorter time series (Pincus, 1991), so Chaptersl3lgursued the use of entropy
measures. In Chapter 3 symbolic entropy (Aziz & A2006) and approximate entropy
(Pincus, 1991) were used to compare sitting possway of infants with typical
development to sitting postural sway of infantdwmdelayed development. Chapter 2
included approximate entropy analysis of earlynih&itting postural sway, and found no

significant difference between the two groups,thatparameters used by the algorithm
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for the analysis in Chapter 2 were standard pars#tat are widely used in other
fields, as discussed in Chapters 2, 3, and 4. Tjp@saneters are comparison vector
length m=2, and distance parameter r=.2 timesttreard deviation of the time series.
In Chapter 2, the lag parameter was adjusted &cduse of contamination of the data
with 60 Hz noise, and sampling at 240 Hz, resulteal repeating cyclical pattern every
4™ data point. Thus Chapter 2 uses what would beresféo as ApEn(m=2,
r=.2*std(Data), t @ 240 Hz, lag=1) using the nontace in Chapter 4. In Chapter 3
approximate entropy parameters are varied a it Imostly focuses on the symbolic
entropy analysis, and for both types of entropyhamaoptimizes parameters to
maximize the separation of the two groups of irda@thapter 4 focuses exclusively on a
systematically varying the parameters in the apprate entropy analysis.

Chapter 2 presents the conclusion that ApEn(m=2}std(Data), t @ 240 Hz,
lag=4) found no significant difference between thego groups of infants. Chapter 3
presents the conclusion that ApEn(m=2, r=3.0*stdfdda @ 240 Hz, lag=4) found
significant differences in infants with delayed ses typical development in developed
sitting in the medial-lateral axis. Chapter 4 prese¢he conclusion that ApEn(m=1,
r=1.0*std(Data), t @ 240 Hz, lag=8) found significaifferences in infants with delayed
versus typical development in early sitting in #8mgerior-posterior axis. A contributing
factor to these various results is that differamnhbers of subjects were analyzed in each
because the analyses were completed at differaastiand each analysis used the
subjects’ data that was available when the analyasperformed. However, the choice
of parameters for the analyses in Chapters 3 amerd made based on searching a large

parameter space to find parameters that perfortertatseparating the developed sitting
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in Chapter 3 and early sitting in Chapter 4. Thsisgithe standard parameters finds no
difference, optimizing the parameters for develogigtthg finds differences in the
medial-lateral axis, and optimizing the parameter®arly sitting finds differences in the
anterior-posterior axis. That no difference wasfbusing the standard parameters is due
to experimental noise being the main determinaggpfoximate entropy using the
standard parameters, a seen in Figure 3.3 in Qh&ptése of larger r values in the
approximate entropy algorithm helped to correcti@r high noise levels in the data, as
this parameter specifies how closely two pattenrthe data have to match before being
counted as similar.

The net result is that early sitting differs in tr@erior-posterior axis, and
developed sitting differs in the medial-lateralsaxvhere typically developing infants
have higher entropy in each case. The lag valugsdfthat show these differences are
relatively short in the time scales usually asgedavith motor control, lag 4 (16.7 msec)
and lag 8 (33.3 msec). Spectral analysis presemt€tdapter 4 confirms the existence of
higher frequency structure in the sitting postgsaay of infants with typical
development, and these higher frequency featueesarseen in the postural sway of
infants with delayed development. The origin of tingh frequency features in the sitting
COP data from infants with typical developmentas clear, but may be due to the
utilization of more functional stretch reflexesibjants with typical development, as
discussed in more detail in Chapter 4, or due talality to perform sensory integration
on a faster time scale, as discussed in more det@hapter 6.

Chapter 5 probes the fractal nature of early infarstural sway using detrended

fluctuation analysis (DFA). Time series with frdgtatterns have repeated patterns, but

www.manaraa.com



215

the patterns are repeated on different time scBlesended fluctuation analysis, which
involves least squares fitting of the data on défe window lengths of the time series
data, was used to probe the fractal propertieseofitne series. The reliance on least
squares fitting means that DFA is quite robustqeeeimental noise and to
nonstationarity in the data (Peng, Havlin, Stadegoldberger, 1995), important
benefits for the infant sitting data set. Differeadetween early sitting postural sway for
infants with typical development and infants wittlad/ed development were seen in the
anterior-posterior axis only, consistent with tippr@ximate entropy with larger, more
noise resistant, r value finding differences betwgeups in anterior posterior postural
sway in early sitting. The early sitting posturalay of infants with delayed development
had higher alpha values than sitting postural swalge anterior-posterior axis of infants
with typical development. The alpha value is relatethe slope of a log-log plot of
spectral density versus frequency of the time s€kkeneghan & McDarby, 2000; note
that this paper switches the usual conventionplfabs the DFA parameter and beta as
the negative slope of the power spectral dendtiy).example, white noise has equal
contributions to the power spectra from all freqeies, so the slope of the log-log plot of
the power spectrum is zero (beta = 0), and theaalplue from DFA is 0.5. For pink
noise, also known as 1/f noise, the slope of tigddg plot of the power spectrais -1
(beta=1), and the alpha value from DFA is 1.0.5fofvn noise, so called because it is
characteristic of Brownian motion, the slope of linglog plot of the power spectra is -2
(beta=2), and an alpha value of 1.5. As the highudency components in a time series
decrease, the slope of the log-log plot of the papectrum decreases, and the alpha

value from DFA decreases. The result found froranbitting DFA presented in
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Chapter 5 is that infants with typical developmieate lower DFA alpha values in early
sitting in the anterior-posterior axis. This ressltonsistent with the increased intensity
in the high frequency range that was discussedaqusly in sitting postural sway for
typically developing infants (see Figures 4.11 arik®, Chapter 4), and is more
pronounced in early sitting in the anterior-posteaxis. The increase in intensity at high
frequency reduces the slope of the power speatradity, and the DFA alpha value is
reduced.

Chapter 6 used the infant sitting postural swag tiatrain an artificial neural
network (ANN), and then the properties of the nekwesere compared for networks
trained with data from infants with typical devetognt and infants with delayed
development. The analysis was repeated with drftereme windows, where position,
velocity, and acceleration were calculated for eartdow, and the ANN was trained to
predict acceleration at a future window. In thaitf visual information, vestibular
information, proprioceptive information, and cutans information are integrated to
obtain position, velocity, and acceleration, whergethe model these kinematic values
are calculated from the time series data. Basati@kinematic information, the central
nervous system calculates the appropriate respoFgéting in muscle contractions.
Muscle contractions produce force, and forces prediccelerations via Newton’s
second law, commonly written as F=ma. Thus the misdesimple feedback control
model, where the kinematic values at time t ar@tsipo the ANN, and acceleration at
time t+t is the output. Once again, the result was thanitsfwith typical development
have a fast component to their postural contrdlitifants with delayed development do

not have, perhaps related to sensory integration.
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Thus in all of the studies that found statisticalignificant differences between
the two groups, the high frequency component irptietural sway of infants with typical
development, and not seen in the postural swayfahis with delayed development, is
important in determining the outcome of the analy8n important question then is what
is the physiological mechanism that is giving tis¢éhese higher frequency components
in the sitting postural sway of infants with tygdickevelopment, and/or why is this
component missing in the sitting postural swaynédmts with delayed development.
Most of the infants in the group that has beenrrefeto as having delayed development
have delayed development because of cerebral @aldythe neurological impairments
associated with cerebral palsy are likely respdedir the lack of ability to control
postural sway with the same short time delaysittfahts with typical development use.

Children with cerebral palsy have been found toehav increased time to
produce a given amount of force in lower extremityvements (Downing, Ganley, Fay,
& Abbas, 2009), and patients with dystonia haveveloreaction times in a visual
stimulus and button-pushing task (Jahanshahi, R&vmiller, 2001). However, in infant
sitting, infants with cerebral palsy do not havd@awver latency to perturbation than
infants with typical development, rather the cohigsue is one of inappropriate co-
contraction and inappropriate muscle firing cooatiion (Brogren, Forssberg, Hadders-
Algra, 2001). Using diffusion tensor imaging, infaiand children with cerebral palsy
were found to have more extensive damage to postbalamic radiation pathways
(sensory processing) than to the descending cepical tracts (motor function), and
damage to posterior thalamic radiation pathwayshedier correlated with motor

function deficit than damage to descending corpata tracts (Hoon, et al, 2009). Thus

www.manaraa.com



218

poor sensory processing may be important in altsitidg postural control in infants
with cerebral palsy.

As discussed in Chapter 6, one commonly used texstudy postural control
involves studying the response to some type ofreatg@erturbation. Another type of
study uses manipulation of sensory input, suctoagaring postural control with open
eyes to eyes closed, to study the effect of visitrese strategies may provide misleading
information about the control of normal, unpertutip@stural control. For example, in
perturbation studies a seated subject is expossahte type of external perturbation,
such as a sudden acceleration, and stretch refiemdies are measured (Granata, Slota,
& Bennett, 2004). While this provides insight iqtostural response to an external
perturbation, which may be important in injury umt@mobile accidents, for example, it
does not answer the question as to whether stretieixes are important in unperturbed
sitting. When visual sensory information is altereehsory re-weighting occurs within 5-
10 seconds (Jeka, Oie, Kiemel, 2008). Thus theupalstontrol system studied is not
merely postural control minus the altered sensealmompletely reweighted sensory
control system, and the relationship of the rewdIsensory control system to the
normal sensory control system is not clear. An athge of the methods used in this
dissertation work is that normal, unperturbedrsitttan be studied. A disadvantage of
this method is that the sensory system involvessiimations of the position, velocity,
and acceleration cannot be identified. Thus thénod= of perturbed postural control are
complimentary to the unperturbed, unaltered senstiy performed here, with neither
providing a complete understanding of the postcwaltrol system, and each adding

insight that the other fails to give.
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The discussion of postural control above, withehghasis on sensory
processing, and in Chapter 4, with the emphasgretch reflex, is tacitly assuming that
the postural control is a feedback control syst@aheed, there must be a feedback
component to postural control. However, feed fodh@ntributions to postural control
also occur, and it is possible that the differerimetsveen postural control of infants with
typical development and infants with delayed depelent are due to feed forward
differences rather than feedback differences. kanmgle, if the infant decides to look
over at a toy while sitting, anticipatory postucahtrol can be used to adjust for the
change in mass distribution that occurs as the seadved. Children with cerebral
palsy have been shown to have decreased antigygadstural adjustment skills (Liu,
Zaino, McCoy, 2007). More work is needed to underdithe underlying mechanisms for
the differences we have found in sitting postuaaitml between infants with typical
development and infants with delayed development.

A controversy in developmental psychology is whettevelopment is a smooth
progression (Kagan, 2008), or whether there atendisstages and development is a
progression from one stage to the next (Spenceer&rie, 2008). The traditional view is
that there are distinct stages in human developmeanh as those described by Piaget
(1928/2009). Others argue for a more continuousétigpmental cascade” based on
evolutionary and developmental biology analogiesl, guestion whether stage theory is a
useful description of development (Kagan, 2008)mbtor control development there
appear to be relatively well defined stages, ateaement of so-called “motor
milestones” such as acquiring the ability to $igrt to crawl, then to stand, then to walk,

etc. define entry into the next stage (World He@ltlganization, 2006). Dynamical
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systems theory views the developmental process tinenstage theory perspective, where
stages are attractors. Maturation and developmehéaiges in response to environmental
stimuli move the child to a new basin of attractiand a new skill emerges as the child
then evolves towards the attractor (Smith & TheB93; Spencer & Perone, 2008).
From this perspective, the development of sittiagavior is a phase transition, where
lying and rolling behaviors are displayed in thstfphase, and sitting behavior is
additionally displayed in the second phase, andnftamts in this study are going through
the phase change.

In developmental psychology then the time scalelferapplication of dynamical
systems theory is on the order of months, as netemnailestones are achieved on this
time frame (World Health Organization, 2006). Intoracontrol, dynamical systems
theory is also applied, but typically on a shottere scale. For example, if | wiggle my
index fingers on each of my hands, | can maintaiarai-phase relationship only up to a
certain frequency, and attempting to wiggle thestdiawill result in a spontaneous
transition to a in-phase (symmetric) relationskigspite my best attempts to maintain the
anti-phase relationship (Kelso, 1995). The in-phaiactor basin includes high
frequency finger wiggling, where as the anti-phateactor basin does not include high
frequencies. The frequency of the movement isrérabparameter, and it helps to
define which attractor basin(s) are available. &iry, the transition from walking to
running as the speed increases can be descrilzedhase transition, with speed being
the control parameter (Diedrich & Warren, 1995haligh whether increased variability
is associated with the walk-run phase transitiasoigtroversial (Kao, Ringenbach, &

Martin, 2003; Seay, Haddad, van Emmerik, & Han2l06). Phase transitions may have
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more variability associated with them, but expentaétechniques must be sensitive
enough to detect the increased variability.

While the word “sitting” sounds like a single atttar, there were two types of
sitting displayed by infants. Typically in earlytsig the infants in the study would sit in
a “prop sit” position, with the arms on the growtdse to hip or mid-thigh and the arms
supporting some of the weight, where as in develguting typically a more upright
posture was used, and the hands rarely touchagtdi@d. In intermediate sitting, the
infant might alternate between the two types dingjt choosing one posture for a while,
then the other, and back to the first, etc. Thizgehtransition behavior is reminiscent of
phase transitions in materials systems. For exarfrplezing or melting of water is a
phase transition involving transition between froaad liquid phases, where temperature
and pressure are the control parameters. Theactlfetween the two phases is very
dynamic on the molecular level during a phase ttians For an individual water
molecule near the ice-water interface, the molecaldd at any instant be incorporated
into the ice crystal (solid phase), and at a letstant be moving in the water (liquid
phase), and even later be incorporated back ietacthcrystal (solid phase again). One
way to describe these dynamics is that the behavian individual near where the
basins of two attractors meet in phase space idyh@riable, and this variability is
observed in the infant sitting dynamics as wellhessmolecular dynamics of the water.
We did not do any sort of analysis of the propraitversus upright sitting in our study,
and the observations discussed above were cassaivaltions made during data
collections. However, this transition might be mteirest in future studies, as some infants

in the developmental delay group never progressed the prop sitting posture to the
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upright sitting posture. For these infants, doesupright sitting attractor never emerge
on a developmental time scale, and/or is therdfigudty in making the phase transition
to upright sitting on shorter motor control timakss? Despite the apparent simplicity of
maintaining sitting posture, it is a complex pragesnd more work is needed to
understand this behavior.

Another interesting aspect of infant sitting poatwontrol is the difference
between control in the anterior-posterior axis uersontrol in the medial-lateral axis.
Chapter 3 presents the conclusion that ApEn(m=20¢std(Data), t @ 240 Hz, lag=4)
found significant differences in infants with dedalyversus typical development in
developed sitting in the medial-lateral axis. Clagtpresents the conclusion that
ApEn(m=1, r=1.0*std(Data), t @ 240 Hz, lag=8) fowsgnificant differences in infants
with delayed versus typical development in eatyrgj in the anterior-posterior axis.
Chapter 5 presents the conclusion that detrendetuifition analysis found significant
differences in infants with delayed versus typob@velopment in early sitting in the
anterior-posterior axis, and Chapter 6 presentsdhelusion that typical infants rely
more on velocity information in control in the ambe posterior axis, whereas control in
the medial-lateral axis uses a wider range of tyfeisformation, and infants with
delayed development do not develop the same relianwelocity information.

Statistical comparisons of measures of postural smexe not performed between
medial-lateral and anterior-posterior sway in CeepR-5, where entropy measures and
fractal measures were addressed. While most airthl/ses presented in this dissertation
were not really designed to address the differebeéseen control in the medial lateral

axis and the anterior-posterior axis, it appeaasttiere are some interesting differences.
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Because the postural control that emerges in thiBatlateral axis appears to be
different than the control that emerges in antegpsterior axis, it is of interest to discuss
why this might occur. Anatomical differences mayim@ortant, for example stretch
reflex associated with the hamstring muscle orapimuscles may be contributing
differently to control in the anterior-posteriorigxcompared to stretch reflex in the
external obligue and other muscles that providéypakcontrol in the medial-lateral axis.
Sensory differences may be important. Cutaneoutbesk useful to postural control in
the medial-lateral axis would include left-righepsure differences, whereas cutaneous
feedback useful to postural control in the antepiosterior axis would include pressure
differences from the proximal to distal portionstoé posterior surface of the leg. If
neural processing of one type of pressure infolwnas more rapid than another, then
that may affect control in the corresponding a&isernatively, the dynamics of
processing of visual information may differ betwelea two axes, resulting in differences
in the postural control that emerges. Visual flouhwnovement in the anterior-posterior
axis more strongly influences postural sway thathémedial-lateral direction in
postural sway (Campbell, Vander Linden, & Palis&@f)6, p. 86-87). Given the
different anatomical and sensory differences betvike anterior-posterior and medial-
lateral axes, it is perhaps not surprising thded#inces in postural control emerge with
development. Based on the results presented int@h@pthat infants with typical
development have larger differences between semsfamynation usage in the two axes
than infants with delayed development, perhapséulmeasure of development and
developmental pathology then is not the value pédricular measure, such as

approximate entropy, but rather the ratio of thatsure in the anterior-posterior axis to
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the measure for the medial-lateral axis. While maoicthe work in the postural control
literature examines the control in the medial-latexis independently from that in the
anterior-posterior axis, as did this work, thermsgttinfant must accomplish both tasks
simultaneously. In this sense, sitting posturakians a dual task, and as in many dual
task experiments, an interaction between the tasgilst be expected. Infants with typical
development might be expected to perform bettea doal task experiment, compared to
infants with cerebral palsy. Thus a measure tr@dtides an interaction between the
control along the two different axes, such as titeopy ratio described above, could be
useful in elucidating differences between thesedvanps. The work in this dissertation
has not satisfied the fundamental need for a uséifutal measure to quantify
differences between infants with typical developtreend infants with delayed
development, and to assess progress an infant &@s as a result of therapeutic
interventions, but perhaps it will provide insidbt future researchers who work towards
that goal.

CONCLUSION: The nonlinear algorithms discussechis work require selection of
parameters, unlike more straightforward measurels as mean or standard deviation. A
significant aspect of this work for nonlinear arsadyis that the standard parameters that
are often used for the nonlinear analyses areeuwsgsarily optimal for a particular data
set. For example, in this work the approximateagytrdid not find a significant
difference between the postural sway of infantéwipical development and infants
with delayed development (Chapter 2). However,darching the parameter space,
parameters were found for approximate entropydithfind significant differences

between the two populations (Chapters 3 and 4ansgher example, the detrended
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fluctuation analysis did not find a difference beem infants with delayed development
and brown noise using the standard linear detregndiat higher order detrending showed
that the postural sway of infants with developmedé&ay is significantly different than
brown noise (Chapter 5). The parameters make thlgsia sensitive to different aspects
of the data, and interpretation of the data need®tdone by relating the parameters to
biomechanical and physiological aspects of the. daaexample, the large r values used
in approximate entropy that are sensitive to defifimes between the postural sway of
infants with delayed versus typical developmentloamterpreted as differences in large
excursions from the mean values, perhaps eventevine infant nearly falls over. The
short lag parameter can be interpreted as a dtertdy response, perhaps a stretch
reflex. Making a better connection between the erathtical analysis and the biology of
the system under study is a challenge for future&kwo

Postural control was found to be different compgrifants with developmental
delay and infants with typical development. Velpaitformation was found to be more
heavily weighted that position or acceleration @storal control in the anterior-posterior
axis for infants with typical development, but fat infants with delayed development.
For infants with typical development, control iretimedial-lateral axis was more
complex in that more different types of informatiware used. Thus differences between
anterior-posterior control and medial-lateral cohtas an indicator of developmental
delay, might be an interesting concept to exploriiure work. An important
contribution to understanding developmental dedane finding that postural control
occurs on a faster time scale for infants witha¢gpdevelopment than it does for infants

with developmental delay. This result is a commuoedd through multiple types of
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analyses. Short time lags in approximate entropyaffers 3 and 4), high frequency
features in spectral analysis (Chapter 4), lowehalalues in detrended fluctuation
analysis (Chapter 5), and more explicitly by tmeetilags used in the artificial neural
network analysis (Chapter 6), all are consistetth wifaster time scale for postural
control in infants with typical development.

Dynamical systems theory has been used to desofdrg development, but as
described by Kelso (1995), not with much succestsd(1995, p. 181) states “Although
‘dynamic systems’ concepts are part of the intéligicheritage of developmental theory,
they have in my view promised much and deliverglli... A more frank assessment is
that as scientific theories go, these efforts ae¢tybarren.” Kelso’s (1995) complaint
about much of the work that has purported to usanyc systems theory is that proper
application of the theory requires the identifioatof a control parameter. For example,
in the phase change from walking to running thaueg as velocity increases, velocity is
the control parameter. Kelso (1995, p. 182) civeswork of Ester Thelen as a rare
example of making a good effort to apply dynamistegns theory to developmental
changes, because she identifies mass (weight @sia)control parameter that changes
resulting in a change in stepping behavior (e.gldi, Ulrich, & Wolf 1991). An
important question is what is the control param#tat changes the infant’s behavior to
upright sitting?

As discussed in Chapter 6, one model of posturairol is the inverted
pendulum model, where a mass remains positionegeabe ground on a vertical rod

due to actuators controlled by a feedback controlliethe delay time of the feedback
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controller exceeds a critical time dy, then the upright position cannot be maintait

The critical time is given b
2L

Leriical = 3g (equation 11)

where L is the distance from ground to the centenass of the pendum, and g is th

acceleration of gravity, which works out to 260 m&& adult standing (Milton, Cabrer
Ohira, Tajima, Tonosaki, Eurich, & Campell, 200%yom this formula, the critical del:
time for control of an inverted pendulum dependshensze of the pendulum, with tall
pendulums able to be controlled using slower respdimes. For an infant, with a cen

of mass about 20 cm above the ground, the critimatrol time is 117 msec

IfL=0.2m,t, =117 msec
IfL=1m, t, =260 msec

Figure 7.4. The critical control time for the sing infant is much faster than t

critical control time for the standing adult, based an inverted pendulum moc
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Note that none of the significant control time gsl&or infants with delayed
development meet this criterion (Table 6.2). While inverted pendulum is a very crude
model of infant sitting postural control (Kyvelido8tuberg, Harbourne, Deffeyes,
Blanke, Stergiou, 2009), and ignores what areyikaportant contributions from the
viscoelastic properties of the infant’s body aslwslthe pelvis and spine joints, the
inverted pendulum model suggests that an infantiwinot able to use fast latency
control mechanisms may have a more difficult cdrgroblem to solve than infants with
typical development.

A hypothesis can be made based on this modetitaatontrol parameter is
length, and that length must exceed a certain whlatecan be calculated from the
sensorimotor delay time using equation 7.1. Thestisensorimotor time delay, perhaps
as a result of neurological damage associatedagitbbral palsy, results in a requirement
for a longer length to be achieved before uprigigtypre can be controlled. This
requirement for a longer length may be a contrifgufactor to the delay in meeting the
upright sitting milestone, for the infants with @édepmental delay, especially since often
they are small for their age. It should be re-ersp®al that this is only a hypothesis, but
future work on infant sitting with a dynamic systetheory perspective might make an
important contribution to understanding the intéoacof biomechanics of infant sitting

and motor control development.

www.manaraa.com



229

References

Aziz, W. & Arif, M. (2006). Complexity Analysis obtride Interval Time Series by
Threshold Dependent Symbolic Entropy. Europeanniuf Applied Physiology,
98, 30-40.

Brogren, E., Forssberg, H., Hadders-Algra, M. (2001fluence of two different sitting
positions on postural adjustments in children gjphastic diplegia. Developmental
Medicine and Child Neurology, 43, 534-546.

Campbell, S.K., Vander Linden, D.W. & Palisano,.R2D06). Physical Therapy for
Children, & Ed. Saint Louis, MO: Elsevier.

Diedrich, F.J., Warren, W.H. (1995). Why changdgfaDynamics of the walk-run
transition. Journal of Experimental Psychology: HumiPerception and Performance,
21(1), 183-202.

Downing, A.L., Ganley, K.J., Fay, D.R., & Abbas].J(2009). Temporal characteristics
of lower extremity moment generation in childrenthnéerebral palsy. Muscle &
Nerve, 39(6), 800-9.

Heneghan, C. & McDarby, G. (2000). Establishingrilation between detrended
fluctuation analysis and power spectral densityyemafor stochastic processes.
Physical Review E, 62(5), 6103-6110.

Granata, K.P., Slota, G.P., & Bennett, B.C., (20@&raspinal muscle reflex dynamics.

Journal of Biomechanics, 37(2), 241-7.
Grassberger, P. & Procaccia, I. (1983). Measulwegstrangeness of strange attractors.

Physica D, 9, 189 - 208.

www.manaraa.com



230

Jahanshahi, M., Rowe, J., & Fuller, R., (2001). ampent of movement initiation and
execution but not preparation in idiopathic dystoixperimental Brain Research,

140(4), 460-8.

Jeka, J.J., Oie, K.S., & Kiemel, T. (2008). Asymnoehdaptation with functional
advantage in human sensorimotor control. Experied@rain Research, 191(4), 453-

463.

Kagan J. (2008). In defense of qualitative chamgevelopment. Child Development,
79(6), 1606-1624.

Kao, J.C., Ringenbach, S.D., & Martin, P.E. (20@3it transitions are not dependent on
changes in intralimb coordination variability. Joak of Motor Behavior, 35(3), 211-
214.

Kelso, J.A.S. (1995Dynamic Patterns: The Self-Organization of Braim d&aehavior.
Cambridge, MA: The MIT Press.

Liu, W.Y., Zaino, C.A., McCoy, S.W. (2007). Anti@pory postural adjustments in
children with cerebral palsy and children with tsgdidevelopment. Pediatric Physical
Therapy, 19(3), 188-95.

Milton, J., Cabrera, J.L., Ohira, T., Tajima, Sonbsaki, Y., Eurich, C.W., & Campbell,
S.A., (2009). The time-delayed inverted pendulunplications for human balance
control. Chaos, 19(2), 026110.

Peng, C.-K., Havlin, S., Stanley, H.E./, & Goldiper, S. (1995). Quantification of

scaling exponents and crossover phenomena in tiomstey heartbeat time series.

Chaos, 5(1), 82-87.

www.manaraa.com



231

Piaget, J., (2009). La causalite chez I'enfantl{ftém’'s understanding of causality). In
The British Journal of Psychology, 100, ptla, 2@4-2original work published in
1928).

Hoon, A.H., Stashinko, E.E., Nagae, L.M., Lin, D.Reller, J., Bastian, A., Campbell,
M.L., Levey, E., Mori, S., Johnston, M.V. (2009ersory and motor deficits in
children with cerebral palsy born preterm correlaith diffusion tensor imaging
abnormalities in thalamocortical pathways. Develeptal Medicine and Child
Neurology, 51(9), 697-704.

Kelso, J.A.S. (1995). Dynamic patterns: The sedfaoization of brain and behavior.
Cambrige, MA: MIT Press.

Pincus, S.M. (1991). Approximate Entropy as a Measfi System Complexity.
Procedings of the National Academy of Sciences2887-2301.

Rosenstein, M.T., Collins, J.J. & De Luca, C.J.939 A practical method for calculating
largest Lyapunov exponents from small data setgsiPa D, 65, 117-134.

Seay, J.F., Haddad, J.M., van Emmerik, R.E., & Hathi(2006). Coordination
variability around the walk to run transition dugihuman locomotion. Motor
Control,10(2), 178-196.

Shannon, C.E. (1949). Communication in the presehoeise. Proceedings of the
Institute of Radio Engineers, 37(1), 10-21, Repdnh: Proceedings of the IEEE, 86
(2), 447-457, 1998.

Smith L.B. & Thelen E. (2003). Development as aaigic system. Trends in Cognitive

Science, 7(8), 343-348.

Spencer, J.P. & Perone ,S. (2008). Defending quiakt change: the view from

www.manaraa.com



232

dynamical systems theory. Child Development, 79639-1647.

Sprott, J.C., Rowlands, G., 1998. Chaos data aealffze professional version. Raleigh,
NC: Physics Academic Software.

Thelen, E., Ulrich, B.D., & Wolf, P.H. (1991). Hidd Skills: A Dynamic Systems
Analysis of Treadmill Stepping during the First Yeslonographs of the Society for
Research in Child Development, 56(1), 1-98.

World Health Organization (2006). WHO Motor Devetognt Study: Windows of
achievement for six gross motor development milestoActa Paediatrica, Suppl
450, 86-95.

Wolf, A., Swift, J.B., Swinney, H.L., & VastanoAl.(1985). Determining Lyapunov

exponents from a time series, Physica D, 16, 285-31

www.manaraa.com



233

APPENDIX A

MATLAB CODE FOR ANALYSIS OF INFANT SITTING POSTURAL

SWAY

A.1l. LINEAR ANALYSIS
This file is the main analysis function used fag thIDRR project that does all the linear
analysis, calls approximate entropy, and also saladiles that CDA can read for LyE,

etc, analysis

function [ProblemFlag]=AnalysisFunction(Filenametifthame, StartVector, EndVector,...
HeadVector, ArmsVector, LegsVector, ikuector, Print)

% AnalysisFunction performs analyses for NIDRR b&lgyP data.
% AnalysisFunction(Filename, Pathname, Startdve&ndVector)
% Call the function with the above syntax. Stadtor and

% EndVector are the start and end points (il8#rames)

% for each of the segments of interest in tleeHileName.

% Results are appended to BabyResults.dat st Ean read.
%

% The linear analysis is performed per Priet@| €1996)

% |IEEE Transactions on Biomedical Engineerirg(94 956-966,
% except the window used in frequency analys& Hanning

% window rather than the multi-taper method f®rigsed.

% The approximate entropy is from code the Maxzgave me,
% which he apparently got off the internet. 8emments in

% that file for details. Also .dat files are sdwso CDA

% can read them (CDA is used to get Lyapunowegpt,

% Correlation Dimension, and Hurst eponent iDRR study).

%

% The files OpenCSVFlleFromMMI.m and apentropyeed to be
% in MatLab's path for AnalysisFunction to run.

%

% The COP data is assumed to have been tal@®ddz, and the
% video frames were at 60 Hz.

%

% 2005 Joan Deffeyes

ProblemFlag=0;
%%%%% % %% %% % %% %6%%% %% %% % %% % %% %% %% %% %% %% % % %% %% Open fi
FileData=importdata([Pathname,\',Filename],'x);

%%%%%%%%%6%6 %% %% %% %% %% %% %% % % % %% %% %% % %% %% % %% %% Filkldada in
file
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InputDataStart=1000000;

for i=

(floor(length(FileData)/2)-10):(length(FileEe) %

if length(FileData{i})==12

if min(FileData{i}=='"FORCE PLATES")==1
InputDataStart=i+10; % to skip past tines
end

end

if i>InputDataStart %% read in COPx and COPy

%% Start by searching for COPx and COPRgaeich line of data
CommakFinder=FileData{i}==",";
Digit='0";
forj=1:5

if CommaFinder(j)==0

Digit(j)=FileData{i}(j);

end

end

StartCOPx=0;
StartCOPy=0;
EndCOPx=0;
EndCOPy=0;
for j=15:45
if CommaFinder(j-2)==1 & CommaFindet{i==1 & CommaFinder(j)==0
StartCOPx=j;
elseif CommaFinder(j-2)==0 & CommaFin@d)==1 & ...
CommakFinder(j)==0 & StartCOR@=
StartCOPy=j;
EndCOPx=j-2;
elseif CommaFinder(j-2)==0 & CommaFin@d)==1 & ...
CommakFinder(j)==0 & StartCOP@~=
EndCOPy=j-2;
end
end

%% Now read out the COPx and COPYy for ithe il

%% If it crashes here, use Notepad to clieekast couple of

%% lines of the problem file. If there i data in them, delete

%% the lines and re-save the file.

DataPointNumber(i-InputDataStart)= str2nDig(t);
COPx(i-InputDataStart)=str2num(FileData8}artCOPx:EndCOPX)); %Crash- see above note
COPy(i-InputDataStart)=str2num(FileData8}artCOPy:EndCOPY));

end

end

%% Note i is line number on the spread sheet

%%
%%
%%
%%
%%
%%
%%
%%

DataPointNumber is the number in the first ooiu

time should correspond to DataPointNumber/240
since data collection is at 240 hz

StartPoint and EndPoint are DataPointNumbers
for user selected range

StartPointindex and EndPointindex are
the indices into the array which holds CORd@OPY
for the user selected range

TrialNumber=str2num(Filename(length(Filename)-SgiiaiFilename)-4));
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Names=['a''b''c''d"'e''f''g" 'h"'i' j' ’k'm' 'n’;
for NumberOfSegs=1:length(StartVector);

%%%%% %% %% %% %% %% Select data range

Screen = get(0,'ScreenSize");

figure

set(gcf,'Position’,[Screen(3)/2+20 40 Scred@(3) Screen(4)-120]);

subplot(2,1,1)

plot(DataPointNumber/4,COPx,'b"); hold on
plot(DataPointNumber/4,COPy,'g";

xlabel('Frame Number")

ylabel('COP Value (mm)")
title(['Filename:',Filename,’ Blue=COPx; Gre@DPYy')

%%% DataPointNumber

StartPoint=4*StartVector(NumberOfSegs);
EndPoint=4*EndVector(NumberOfSegs);

%% At this point, StartPointindex is the sammesgartPoint.
%% Historically in this code they were diffeteand it
%% doesn't seem worthwile to go change them now
StartPointindex=find(DataPointNumber==Start®pin
EndPointindex=find(DataPointNumber==EndPoint);

if isempty(EndPointindex) % problems with fitading!!!
disp('Problems with file")
LastDataPoint=max(DataPointNumber)
EndPoint
ProblemFlag=124;

end

subplot(2,1,1)
plot(.25*(StartPoint:EndPoint), COPx(StartPbidex:EndPointindex),'r','LineWidth',3);
plot(.25*(StartPoint:EndPoint), COPy(StartPtidex:EndPointindex),'r','LineWidth',3); hold off

%% The COPd is a distance term
COPxNew=COPx(StartPointindex:EndPointindex)-n{€®DPx(StartPointindex:EndPointindex));
COPyNew=COPy(StartPointindex:EndPointindex)-n{€®Py(StartPointindex:EndPointindex));
COPdNew=sqrt(COPxNew."2+COPyNew. 2) ;%per B(996)

subplot(2,1,2)

plot(.25*(StartPoint:EndPoint), COPdNew,'r");

xlabel('Frame Number")

ylabel('COPd Value (mm)")

title('Range: ',num2str(StartPoint/4)," taimm2str(EndPoint/4),...
' from: '|Filename,"...", Names(NumbkS€ys)])

if Print==1

print
close
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elseif Print==2
saveas(gcf,[Pathname,\',Filename(1:leRgdr{ame)-4),...
Names(NumberOfSegs), TimeSerie§,jog")

close
end

%%6%6%6%6%%%%%%% % % %% %% %% % %% %% % % %% %% Save data seterted
%% Three data types are saved - COPx, COPyCarret.

if Pathname(1)=="E'
[NewFilename, Pathname] = uiputfile(".d&glect Location for SAVE');
if NewFilename~=".dat'
Filename=NewFilename;
end
end

for DataType=1:3
if DataType==1
Suffix="COPx.dat";
NewData=COPx(StartPointindex:EndPoitéix);
elseif DataType==
Suffix="COPy.dat';
NewData=COPy(StartPointindex:EndPoit¢ix);
elseif DataType==3
Suffix="COPd.dat’;
NewData=COPdNew;
end
SaveDATfile = [Filename(1:length(Filenang)-..
Names(NumberOfSegs),Suffix];
fid = fopen([Pathname,'\', SaveDATfile])w'

for k=1:length(NewData)
fprintf(fid,'%f\r\n',NewData(k));
end
fclose(fid);
end

%%%%%%%% %% % %% % %% % %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% %% % %
%%%%%%%%% %%

%%%%%%%%%%%%%%% LINEAR ANALYSES
%%%%%% %% %% % %% %% %% %% % %% %% %%

%%%%%% %% %% % %% % %% % %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% %% % %
%%%%%%% %% %%

%%%%% Root Mean Square (x,y,d) - i.e. Standiasdation

%% Prieto equations 6 and 7, p 958.
RMSxMM=sqrt((1/length(COPxNew))*sum(COPxNew.}\3DoPrieto divides by n, not (n-1)
RMSyMM=sqrt((1/length(COPyNew))*sum(COPyNew.}\DoPrieto divides by n, not (n-1)
RMSdMM=sqrt((1/length(COPdNew))*sum(COPdNew)‘2bPrieto divides by n, not (n-1)
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%%%%%% %% %% %% % %% %% %% % %% %% %% % % %% %% % %0 %% %% % %% %% %% %% %0 %% %
%%%%%%%%% %%

%%%%% Range Anterior-Posterior

RangeAPinMM=max(COPxNew)- min(COPxNew)

%%%%%%%% %% % %% % %% %% %% %% %% % %% %% %% %% %% %0 % % % %% %% %% %% %% % %
%%6%%%%%%%%%

%%%%% Range Medial-Lateral

RangeMLinMM=max(COPyNew)- min(COPyNew);

%%%%%% %% %% %% % %% %% %% % %% %% % %% %% %% %% %% %% % % %% %% %% %% %0 %% %
%%%%%%%%%%%

%%%%% Sway Path

SwayPathMM=sum(abs(diff(COPdNew)))

96%%% %% %% %% % %% %% %6 %% % %% % %% %% % % %% % %% %% % %% %% %% %% % % % % %% %
%0%%%%% %% %% %
%%%%% Area of 95% Confidence Circle
% Note COPd data are the radii
% Find 95% of radii below 95%Radius, i.e. oited test
% Distribution of radii is not a normal distuition, but
% for now use 1.645 from the normal pdf. Chiresee pdf needed?
% Prieto assumes normal distribution
NintyFivePercentRadius=mean(COPdNew)+1.645&@iRdNew);
CircleAreaMM2=pi*NintyFivePercentRadius"2

%%%%%%%% %% % %% %% %% %% %% % %% % %% %% %% %% %% % % % % %% %% %% %% %% % %
%%6%%%%%%%%%

%%%%% Area of 95% Confidence Ellipse per Pr{@@06)

%%%%%%% from Sokal and Rohlf (1995) Biometrg®5scited by Prieto.

sAP= sgrt((1/length(COPxNew))*sum(COPxNew. 2pPrieto
sML= sqrt((1/length(COPyNew))*sum(COPyNew. "ZpPrieto
SAPML= (1/length(COPxNew))*sum(COPxNew.*COPyNe®%Prieto

PrietoF=3;

% Note Prieto has missed squaring the sumeofittst two terms
% in his equation(16) page 959.

% This equation is actually from Sokal and R¢h995).
PrietoD= sqrt((sAP"2+sML"2)"2-4*(sAP"2*sML"2-§ML"2));

PrietoEllipseRadiusA= sqrt(PrietoF*(sAP"2+sMiietoD)); %Prieto eq 14
PrietoEllipseRadiusB= sqrt(PrietoF*(sAP"2+sMEPBetoD)); %Prieto eq 15
EllipseAreaMM2= 2*pi*PrietoF*sqrt(SAP"2*sML"2APML"2) %Prieto eq 18

%Calculate these for plot
PrietoLambdal=(sAP"2+sML"2+PrietoD)/2; % frowk&l and Rohlf
PrietoSlope=sAPML/(PrietoLambdal-sML"2); % fr&@uokal and Rohlf
PrietoAngle=atan(PrietoSlope);
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%%9%6%% %% %% %%%%% Area of Ellipse

%PIlot data in green

figure

set(gcf,'Position’,[20 Screen(4)/2 Screen(2PZcreen(4)/2-120]);

plot(COPxNew,COPyNew,'.g"); hold on
Theta=(pi/180)*linspace(0,360);

%%%Now add circle to plot
x1=NintyFivePercentRadius.*cos(Theta);
y1=NintyFivePercentRadius.*sin(Theta);

plot(x1,y1,'b";

%%%Now add ellipse to plot
x1=PrietoEllipseRadiusA.*cos(Theta);
y1=PrietoEllipseRadiusB.*sin(Theta);

OrientRad=PrietoAngle;

x2=x1*cos(OrientRad)-y1*sin(OrientRad);
y2=x1*sin(OrientRad)+yl*cos(OrientRad);

plot(x2,y2,'r"); hold off

% make plot pretty

title(strcat('Green=data, Blue=95% circle, R@8% Ellipse',...
Filename,'...",Names(NumberOfSegs)));

xlabel('COPX")

ylabel('COPy")

axis image

if Print==1
print
close

elseif Print==2
saveas(gcf,[Pathname,'\',Filename(1:lekgdr{ame)-4),...

Names(NumberOfSegs), CircleEllijs#], 'jpg’)

close

end

%%%%%% %% %% %% %% %% % %% %% % %% %% %% %% %% %% %% %% % %% %% %% %% %% % %
%%%%%%%%% %%
%%9%6%%%%%%%%%%%% Frequency Domain Analyses % %% %% %% % %% %% %% %

%%%%% % %% %% % %% %% %% %% %6 %% %% % %% %% %% %% %0 %0 %0 % % %9696 %% %% %% %0 %% %
%%%%%%%%% %%

% Prieto, et al (1996) use a sinusiodal myl&tamethod with

% eight tapers for their spectral analysegyldite Riedel and

% Sidorenko(1995), Minimum Bias Multiple Tag#gpectral Emission.

% IEEE Transactions on Signal Processing 4B88)195.
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% My implementation follows the equation
% in paragraph 4, page 188 of Riedel and 8itkw.

N=length(COPdNew);

n=1:N;
TaperWindow=0.5*(1-cos(2*pi*((n-1)/(N-1))));
WindowedData=(COPdNew.*TaperWindow);

TransformFFT=fft(WindowedData);

if length(TransformFFT)/2 ~= floor(length(TrdoemFFT)/2) % test for n even
TransformFFT=TransformFFT(1:length(Transi6iFT)-1); % if odd, toss one data point.
end

Spectrum=TransformFFT(1:length(TransformFFT}/2)
conj(TransformFFT(1:length(TransformFFT){2)

% This is why the index starts at 3 (so pointnd 2 are removed)

% The big difference is here a Hanning windewsed,

% whereas Prieto used a multitaper method.
f=(.5/length(Spectrum))*240*(1:length(Spectrum));

figure
set(gcf,'Position’,[20 40 Screen(3)/2-20 Sc4¢a-120]);

subplot(3,1,1); plot(f,Spectrum);

title(strcat('Power Spectrum:',Filename,'.alid¢s(NumberOfSegs)));
% xlabel('Frequency (Hz)");

ylabel(‘Arbitrary Units'");

subplot(3,1,2); plot(f,Spectrum);

title(strcat('Power Spectrum (60 Hz signaliekame,'...", Names(NumberOfSegs)));
% xlabel('Frequency (Hz)");

ylabel(‘Arbitrary Units'");

Spectrumindices=find(f>40 & f<80);
PlotMax=max(Spectrum(Spectrumindices));

axis([50 70 0 PlotMax]);

subplot(3,1,3); plot(f,Spectrum);

title(strcat('Power Spectrum (to 5 Hz):',Filerg'...",Names(NumberOfSegs)));
xlabel('Frequency (Hz)";

ylabel(‘Arbitrary Units'");

axis([0 5 0 max(Spectrum)]);

if Print==1
print
close
elseif Print==2
saveas(gcf,[Pathname,'\',Filename(1:lekgdr{ame)-4),...
Names(NumberOfSegs),'Spectrum.jjip§’)
close
end
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%%%%%% %% %% %% % %% %% %% % %% %% %% % % %% %% % %0 %% %% % %% %% %% %% %0 %% %
%%%%%%%%% %%
%%%%% Median Frequency
% Note Prieto discards the first two pointshia spectra
% and only uses data to 5 Hz. We have freqesng at 7, so
% cutoff here is at 10 Hz - to avoid 60 Hz eois
% when doing power spectral densities. Seeadgfof p 960
Freqindex=1;
while f(Freglndex)<10
Freqlndex=Freqindex+1;
end
AnalysisSpectrum=Spectrum(3:Freqindex);
AnalysisFrequency=f(3:Freqindex);

CumSumPower=cumsum(AnalysisSpectrum);
FindMedian=find(CumSumPower>.5*sum(AnalysisSpsu));
Medianindex=min(FindMedian);

MedianFrequencyHz=(.5/length(Spectrum))*240*iéedindex

%6%6%%%%%% %% % %% %%6%% %% %% % %% % % %% %% %6 %% %% % % % %6%6%6 %% %% %% % % % %
%%6%%%%%%%%%
%%%%% Frequency Dispersion

MuO=(1/length(AnalysisSpectrum))*sum(AnalysigSpum);
Mul=(1/length(AnalysisSpectrum))*sum(AnalysigSpum.*AnalysisFrequency);
Mu2=(1/length(AnalysisSpectrum))*sum(AnalysieSpum.*AnalysisFrequency.”2);

FrequencyDispersion=sqrt(1-Mul”2/(Mu0*Muz2))

%%% %% %% % %% %% %% %% %% % %% % %% %% %% % %% %% %% % %% %% % %% %% %% %6 %% %
%%%%%% %% %% %
%%%%% Approximate Entropy

ApproxEntropyD=apentropy(COPdNew)
ApproxEntropyX=apentropy(COPxNew)
ApproxEntropyY=apentropy(COPyNew)

%%%%%%%% %% % %% % %% % %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% %% % %
%%%%%%%%% %%
%%%%%%%%%%%%  Save Results to File  %%%%%68%6%0%%%%%%%% %% %%

%%0%%%% %% %% % %% %% %% %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% %% % %
%%%%%%% %% %%

FilenameProblem=0;

if Filename(1)=="T' % Typically Developing
SubjectType(1)=0;

elseif Filename(1)=="'C' % Cerebral Palsy
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SubjectType(1)=1;

elseif Filename(1)=="H' % Hypotonic
SubjectType(1)=2;

else
disp(‘Error in filename - SubjectType, datd saved’)
FilenameProblem=1;

end

RestOfFilename=Filename(2:length(Filename)-4);

SubjectNumber=str2num(RestOfFilename(1:2));

if isempty(SubjectNumber)
disp('Error in filename - SubjectNumbertadaot saved’)
FilenameProblem=1,
ProblemFlag=414

end

DataMonth=str2num(RestOfFilename(4:5));

if isempty(DataMonth)
disp('Error in filename - DataMonth, dat saved')
FilenameProblem=1;
ProblemFlag=421

end

DataDay=str2num(RestOfFilename(7:8));

if isempty(DataDay)
disp(’Error in filename - DataDay, data saved")
FilenameProblem=1;
ProblemFlag=428

end

DataYear=str2num(RestOfFilename(10:11));
if isempty(DataYear)
disp('Error in flename - DataYear, data saved')
FilenameProblem=1;
ProblemFlag=435
end
NS=N-1; % number of time steps= number of pomtnus 1.
DataToSave=[SubjectType, SubjectNumber, Datagh|ddataDay, DataYear, ...
TrialNumber, NumberOfSegs, DateNum(p&@3960,... %excel date format
RMSxMM, RMSyMM, RMSdMM, RangeAPinMM, RgeMLIinMM, ...
SwayPathMM, CircleAreaMM2, EllipseAred?, ...
MedianFrequencyHz, FrequencyDispersigproxEntropyD,...
ApproxEntropyX,ApproxEntropyY, NS,...
StartVector(NumberOfSegs),EndVector(KendfSegs),...
HeadVector(NumberOfSegs), ArmsVectortiberOfSegs),...
LegsVector(NumberOfSegs), TrunkVectaniitberOfSegs)];

% stop execution if there is a problem

if ProblemFlag~=0 | length(DataToSave)~=28
disp('Problem saving the data - analysiefion line 449"
return

end

241
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% Look for file named "BabyResults.dat"
Directory=dir(Pathname);
NumberOfltems=length(Directory);
FileFound=0;
for i=3:NumberOfltems
if length(Directory(i).name)==length('Babgsults.dat’)
if Directory(i).name=='"BabyResults.dat'
FileFound=1;
end
end
end

if FileFound==1; % open existing file
CurrentFile= importdata([Pathname,"\','BRbgults.dat]);
SaveFile=[CurrentFile;DataToSave];

else
SaveFile=DataToSave;

end

csvwrite([Pathname,'\','BabyResults.dat"], Fdleg;

end
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The approximate entropy was calculated with Kaplage that was available on his web

site. This is the symbolic entropy code.

function [NCSE] = SymEntropy(Data, Thres,WordLen)

% Symbolic Entropy

% Based on: Aziz & Arif, Eur J Appl Physiol (20083: 30-40.

% SymEntropy(Data,Thres,WordLen)
% Data is the time series data
% Thres is the threshold value
% WordLen is the length of the word

% Check that data is a column vector
if size(Data,1)>1
Data=Data’;
end
Scale=2."[WordLen-1:-1:0]; % for binary conversion

SymSeg=Data>=Thres; % Step 1 from Aziz & Arif

for i=1:(length(SymSeq)-WordLen+1)
Word=SymSeq(i:i+WordLen-1); % Step 2

WordCode(i)=sum(Word.*Scale); % Step 3
end

%% Calculate probabilities
for i=1:8
p(i)=length(find(WordCode==(i-1)));
end
p=p/length(WordCode);% Probabilities sum to 1
% calculate Shannon Entropy
NonZeros=find(p); % don't include p=0 values
SE= -sum(p(NonZeros).*log2(p(NonZeros))); % Equatdo
% Calcualte corrected Shannon Entropy

Cr=length(unique(WordCode)); %number of occuringago
M= 2"WordLen; %Total number of words possible

CSE=SE + (Cr-1)/2*M*log(2); % Equation 5
CSEmax=-log2(1/M)+(M-1)/2*M*log(2); % Equation 6
% Normalized Corrected Shannon Entropy

NCSE=CSE/CSEmax; % Equation 7
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The DFA was performed two ways — with a lineatdithe F vs window size, and with a
third order fit and an analytical derivative evaadin the middle of the plot. Below is
the third order fit methodNpnlinearDFA3) and below it is the liner fit method

(NonlinearDFA).

function [alpha, Resids]= NonlinearDFA3(Datalnputjér,varargin)
% Do DFA using polynomial of selected order

% alpha= NonlinearDFA(Data,Order)

% alpha= NonlinearDFA(Data,Order,Plot,PlotTitle)

% Plot = 0 no plot made (defalt)

% Plot = 1 to get plot and see fit

% PlotTitle is a string

% Variables: LengthWin: size of current window

% NumWin: number of windows of this size
% i : index into level
% j : index across time -position lo¢ turrent window

if isempty(varargin)
MakePlot=0; % defalt is for no plot
else
MakePlot=varargin{1};
PlotTitle=varargin{2};
end

% Integrate data first

Data=cumsum(Datalnput);

% Check for row vector

if size(Data,1)>size(Data,2)
Data=Data’;

end

LengthWin=length(Data); %will get divided by 2 indp
i=1;
%while LengthWin >= 2*2~Order % higher order nedatzger data sets?
while LengthWin >= 8
NumWindows=floor(length(Data)/LengthWin);
for j=1:NumWindows
Lowerldx=(j-1)*LengthWin+1;
Upperldx=j*LengthWin;
Fwin(j)=CalcResids(Data(Lowerldx:Upperldjder);
end

n(i)=LengthWin; % n collects the window lengtked

F(i)=mean(Fwin); % F collects the F functiosuks

i=i+1; % Update index into level

LengthWin=floor(LengthWin/2);% reset for nertkl
end

pCoeffs=polyfit(log(n),log(F),3); % third order fit

% for slope take derivative and evaluate at middlglot
Middle=floor(length(n)/2);

MidVal=mean([n(Middle),n(Middle+1)]);

alpha=3*pCoeffs(1)* log(MidVal)*2+ 2*pCoeffs(2)*IdiylidVal)+pCoeffs(3);
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if MakePlot==1
%figure
nVals=linspace(min(n),max(n),500);
FitData=exp(polyval(pCoeffs,log(nVals)));
loglog(n,F,'ok’,'MarkerFaceColor','k"); hold on

%%%%% %% %% Plot pt where slope is evaluated stoqk line

% plot([MidVal,MidVal],[F(1),F(end)],'g:");
yVal=polyval(pCoeffs,log(MidVal));
SlopeLineData=exp(polyval([alpha,yVal-alpha*{dtidVal)],log(n)));

% loglog(n(Middle-1:Middle+2), SlopeLineData(titlle-1:Middle+2),'g";
loglog(n(Middle:Middle+2), 2*SlopeLineData(MitklMiddle+2),...
'‘Color',[.7 .7 .7],'LineWidth',5); %Plonk with slope alpha in middle
loglog(nVals, FitData,'k:"); %fit data
loglog(n,F,'ok’,'MarkerFaceColor','k");

% plot pt where slope is calculated
%loglog(MidVal,exp(yVal),'kd','MarkerSize',5);

xlabel('n','FontSize',16)
ylabel('F','FontSize’,16)
if isempty(PlotTitle)
else
title([PlotTitle," Order for DFA=",num2¢®rder),...
' alpha=",num2str(alpha)])
end
disp('Hit return to continue")
%pause
%close
end

yVal=polyval(pCoeffs,log(MidVal));
SlopeLineData=exp(polyval([alpha,yVal-alpha*log(Midl)],log(n)));
Resids=sum((log(F)-log(SlopeLineData)).”2);

% figure

% loglog(n,F,'0"); hold on

% loglog(n,SlopeLineData,'0g’)

% legend('Data’,'Fit To Data’)

% title(['SumSquareError=",num2str(Resids)]);
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function [alpha, Resids]= NonlinearDFA(Datalnputi@r,varargin)
% Do DFA using polynomial of selected order

% alpha= NonlinearDFA(Data,Order)

% alpha= NonlinearDFA(Data,Order,Plot)

% Plot = 0 no plot made (defalt)

% Plot = 1 to get plot and see fit

% Variables: LengthWin: size of current window

% NumWin: number of windows of this size
% i : index into level
% j : index across time -position lo¢ turrent window

if isempty(varargin)
MakePlot=0; % defalt is for no plot

elseif length(varargin)==2
MakePlot=varargin{1};
PlotTitle=varargin{2};

end

% Integrate data first

Data=cumsum(Datalnput);

% Check for row vector

if size(Data,1)>size(Data,2)
Data=Data’;

end

LengthWin=length(Data); %will get divided by 2 indp
i=1;
%while LengthWin >= 2*2~Order % higher order nedatzger data sets?
while LengthWin >= 8
NumWindows=floor(length(Data)/LengthWin);
for j=1:NumWindows
Lowerldx=(j-1)*LengthWin+1;
Upperldx=j*LengthWin;
Fwin(j)=CalcResids(Data(Lowerldx:Upperldjder);
end

n(i)=LengthWin; % n collects the window lengtked

F(i)=mean(Fwin); % F collects the F functiosuks

i=i+1; % Update index into level

LengthWin=floor(LengthWin/2);% reset for nertkl
end

pCoeffs=polyfit(log(n),log(F),1);
alpha=pCoeffs(1);

if MakePlot==1
FitData=exp(polyval(pCoeffs,log(n)));
loglog(n,F,'ok’,'MarkerFaceColor','k"); hold on
loglog(n, FitData,'k:");

loglog(n(3:end-2), 2*FitData(3:end-2), 'Colp?,.7 .7],'LineWidth',5);

xlabel('n','FontSize',16)
ylabel('F','FontSize',16)
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% title([PlotTitle," Order for DFA="num2str(@er),...

% ' alpha=',num2str(alpha)])
end

FitData=exp(polyval(pCoeffs,log(n)));
Resids=sum((log(F)-log(FitData)).”2);

% figure

% loglog(n,F,'0"); hold on

% loglog(n,FitData,'0g’)

% legend('Data’,'Fit To Data’)

% title(['SumSquareError=',num2str(Resids)]);
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A.4. ARTIFICIAL NEURAL NETWORK
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The code for the artificial neural network inclugescript that takes the COP data, chops
it into windows, calculates the position, velociiyd acceleration for that window, and
then saves the results. The main script then rib&dle created, and calls
BabyANNFunctCh5.nthat does the ANN calculation. All three files sted below.

%% Opens all files in a directory, calculates aerage position,
%% velocity, and acceleration for each group ofiata points.

%% This data will be used to train the neural roekwy
clear all

load cpData
load tdData

idxCpAP=find(cpFilenames(:,21)=="x");
idxCpML=find(cpFilenames(:,21)=="y");

idxTdAP=find(tdFilenames(:,21)=="x");
idxTdML=find(tdFilenames(:,21)=="y");

cpSubjs=unique(cpFilenames(;,1:3),'rows";
tdSubjs=unique(tdFilenames(:,1:3),'rows");

for s=1:length(cpSubjs)
idxSubj=strmatch(cpSubjs(s,:),cpFilenames())1:3
Year=str2num(cpFilenames(idxSubj,11:14));
Month=str2num(cpFilenames(idxSubj,5:6));
Day=str2num(cpFilenames(idxSubj,8:9));
Date=365*(Year-2005)+31*Month+Day;
DayF=find(Date==min(Date)); %First day
DayL=find(Date==max(Date)); % last day

idxCPFirstDay{s,1}= intersect(idxSubj(DayF),i@pAP);
idxCPLastDay{s,1}= intersect(idxSubj(DayL),idp@P);
idxCPFirstDay{s,2}= intersect(idxSubj(DayF),i@pML);
idxCPLastDay{s,2}= intersect(idxSubj(DayL),idp®IL);

end

for s=1:length(tdSubjs)
idxSubj=strmatch(tdSubjs(s,:),tdFilenames():3
Year=str2num(tdFilenames(idxSubj,11:14));
Month=str2num(tdFilenames(idxSubj,5:6));
Day=str2num(tdFilenames(idxSubj,8:9));
Date=365*(Year-2005)+31*Month+Day;
DayF=find(Date==min(Date)); %First day
DayL=find(Date==max(Date)); % last day

idxTDFirstDay{s,1}= intersect(idxSubj(DayF),idd AP);
idxTDLastDay{s,1}= intersect(idxSubj(DayL),idxIAP);
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idxTDFirstDay{s,2}= intersect(idxSubj(DayF),i@xML);
idxTDLastDay{s,2}= intersect(idxSubj(DayL),idxIML);

end

save idxFirstLastDays idxCPFirstDay idxCPLastDayTiDFirstDay idxTDLastDay

%% %%%%%%%%% now load files and calculate
clear all
load cpData
load tdData
load idxFirstLastDays
Lag=20;
idxAll=0;
for DataType=1:4
for Side=1:2 % 1=AP,2=ML
if DataType==1
Idxs=idxCPFirstDay;
elseif DataType==
Idxs=idxCPLastDay;
elseif DataType==
Idxs=idxTDFirstDay;
elseif DataType==
Idxs=idxTDLastDay;
end

for Subj=1:length(ldxs)

if DataType==1 | DataType==
Datas=cpData(;,Idxs{Subj,Side});
SN=cpFilenames(ldxs{Subj,Side},1:3)

elseif DataType==3 | DataType==4
Datas=tdData(:,ldxs{Subj,Side});
SN=tdFilenames(ldxs{Subj,Side},1:3)
end

for Trial=1:size(Datas,2)
idxAll=idxAll+1;
SubjNames(idxAll,:)=SN(1,:); % amdk subject names
DataTypes(idxAll)=DataType; % calieype of data
AxisAPML (idxAll)=Side;

% select data to be choppped up
Data=Datas(:, Trial)-mean(Datas{al)y;

DataChops=floor(length(Data)/Lag);
for k=1:DataChops
ThisData=Data(Lag*k-(Lag-1):*&)
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Vel=diff(ThisData);
Accel=diff(Vel);

Position(k,idxAll)=mean(Thisat
Velocity(k,idxAll)=mean(Vel);
Acceler(k,idxAll)=mean(Accel);

end
end
end
end

end

%Save chopped data and info on each trial
save DataForBabyANNChapter5Lag20 Position Velo&itgeler SubjNames DataTypes AxisAPML

www.manharaa.com




% %% Main program calls BabyANNFunctCh5 to do ANMNbysis for each file
clear all

% N= number of neurons in hidden layer
N=6;

%%%%%% %% %% % %% %% %% %% Load training data
% this data was calculated from the center-of-presdata
% see BabyPosVelAccer4ANNChapt5.m code for details
Lag=[8, 12, 20, 32, 45, 60, 64, 70, 80, 90, 12M@];18
for L=1:length(Lag)
if L==1
load DataForBabyANNChapter5Lag8
elseif L==2
load DataForBabyANNChapter5Lag12
elseif L==3
load DataForBabyANNChapter5Lag20
elseif L==4
load DataForBabyANNChapter5Lag32
elseif L==5
load DataForBabyANNChapter5Lag45
elseif L==6
load DataForBabyANNChapter5Lag60
elseif L==7
load DataForBabyANNChapter5Lag64
elseif L==8
load DataForBabyANNChapter5Lag70
elseif L==9
load DataForBabyANNChapter5Lag80
elseif L==10
load DataForBabyANNChapter5Lag90
elseif L==11
load DataForBabyANNChapter5Lag120
elseif L==12
load DataForBabyANNChapter5Lag180
end
% % Rescale
% rescale for Norm ; Rescaling in BabyANNFunctCbhaprned off
Acceler=(Acceler-mean(Acceler(:)))/std(Accelpr(
Velocity=(Velocity-mean(Velocity(:)))/std(Veldy(:));
Position=(Position-mean(Position(:)))/std(Piosi(:));

% do ANN analysis

Plotlt=0; %=1 make plot, =0 no plot

for Trial=1:size(Position,2);
Trainln=[Position(;, Trial),Velocity(:, TriglAcceler(;, Trial)];
[Weights1(:,:, Trial), Weights2(;, Trial),...

TimesThruLoop(Trial),Redo(Trial)]=BabMNFunctCh5(TrainIn,N,Plotlt);

ResultPVA(Trial,1:3)=(Weights1(:,:, Trial)*@ights2(:, Trial));
disp(['Trial ‘,num2str(Trial),' done. Lagaum2str(Lag(L))])

end

if L==1

251

save ANNResultsCh5NormLag8 Weightsl WeightimesThruLoop ResultPVA Redo

elseif L==2
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save ANNResultsCh5NormLag12 Weights1l WeigftimesThruLoop ResultPVA Redo
elzzg:_ATVSNResultsChSNormLagZO Weights1 WeaigfftimesThruLoop ResultPVA Redo
elzzl\]:el__A?\I‘lNResultsChSNormLag32 Weights1 WeaigftimesThruLoop ResultPVA Redo
elssez;\illé:;SNResultsChSNormLag45 Weights1 WeaigftimesThruLoop ResultPVA Redo
elssez;\illé:;SNResultsChSNormLagGO Weights1 WeaigftimesThruLoop ResultPVA Redo
eISser;\f\/lt_e_ﬁjl\iNResuItsChSNormLagG4 Weights1 WeaigfftimesThruLoop ResultPVA Redo
eISser;\f\/lt_e_,&lz\slNResuItsChSNormLag?O Weights1 WeaigfftimesThruLoop ResultPVA Redo
elsse;vlt_e_glglNResultsChSNormLagSO Weights1 WeaigfftimesThruLoop ResultPVA Redo
elssez;\illé_gNlﬁlResultsChSNormLagQO Weights1 WeaigftimesThruLoop ResultPVA Redo
elssez;\illé:;NlilResultsChSNormLangO Weights1l WisgfimesThruLoop ResultPVA Redo
els(sjez:\illé:;NlilResultsChSNormLagl80 Weights1l WisgfimesThruLoop ResultPVA Redo
en

clear Weights1 Weights2 TimesThruLoop ResultPR&do
end

%% analyze weights
clear all
Lag=[8, 12, 20, 32, 45, 60, 64, 70, 80, 90, 12@]18
AllLabels=";
CpPVA=][];
TdPVA=[];
for L=1:length(Lag)
if L==1
load ANNResultsCh5NormLag8 Weightsl WesghtoTimesThruLoop ResultPVA Redo
elseif L==2
load ANNResultsCh5NormLag12 Weights1l WedghTimesThruLoop ResultPVA Redo
elseif L==3
load ANNResultsCh5NormLag20 Weights1l WedgheTimesThruLoop ResultPVA Redo
elseif L==4
load ANNResultsCh5NormLag32 Weights1l WedghTimesThruLoop ResultPVA Redo
elseif L==
load ANNResultsCh5NormLag45 Weightsl WeigheTimesThruLoop ResultPVA Redo
elseif L==6
load ANNResultsCh5NormLag60 Weightsl WeigheTimesThruLoop ResultPVA Redo
elseif L==7
load ANNResultsCh5NormLag64 Weightsl WeigheTimesThruLoop ResultPVA Redo
elseif L==8
load ANNResultsCh5NormLag70 Weights1l WedgheTimesThruLoop ResultPVA Redo
elseif L==9
load ANNResultsCh5NormLag80 Weights1l WedghTimesThruLoop ResultPVA Redo
elseif L==10
load ANNResultsCh5NormLag90 Weights1l WedgheTimesThruLoop ResultPVA Redo
elseif L==11
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load ANNResultsCh5NormLag120 Weights1l WesghoTimesThruLoop ResultPVA Redo

elseif L==12

load ANNResultsCh5NormLag180 Weights1l WesghoTimesThruLoop ResultPVA Redo

end

%%%%%%%%%% Propagate [100],[010],[001]
for Trial=1:720
for i=1:3

Input=-1*[1 1 1]J;
Input(i)=0; % value that gets propagdate
Resultl=Input*Weights1(;,:, Trial);
Result1=1./(1+exp(-Result1));% outpihiolden layer
Result2=Result1*Weights2(:,Trial);
Result2=1./(1+exp(-Result2)):% Outplibotput layer

%
ResultPVA(Trial,i)=Result2;
end
end
%%6%%%%%%% %% %% %% %

% Just to get datatypes load this
load DataForBabyANNChapter5Lag8
idxCPFirstDay=find(DataTypes==1);
idxCPLastDay=find(DataTypes==2);
idxTDFirstDay=find(DataTypes==3);
idxTDLastDay=find(DataTypes==4);

idxAP=find(AxisAPML==1);
idxML=find(AxisAPML==2);

Subjs=unique(SubjNames,'rows");

CPidx=0;
TDidx=0;
for s=1:size(Subjs,1)
if Subjs(s,1)=="C'
CPidx=CPidx+1;
%first day

idxDayF=intersect(idxCPFirstDay,strng®ubjs(s,:),SubjNames));

idxDayFAP=intersect(idxDayF,idxAP);
idxDayFML=intersect(idxDayF,idxML);
%last day

idxDayL=intersect(idxCPLastDay,strmdthbjs(s,:),SubjNames));

idxDayLAP=intersect(idxDayL,idxAP);
idxDayLML=intersect(idxDayL,idxML);

if length(idxDayFML)>1
CPSubjPVA(CPIdx,1:6)=[mean(ResulffdxDayFAP.,:)),...
mean(ResultPVA(idxDayFML,:)),..
I;
else
CPSubjPVA(CPIdx,1:6)=[ResultPVA(DxyFAP,),...
ResultPVA(idxDayFML,:),...
I;
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end

if length(idxDayLML)>1
CPSubjPVA(CPidx,7:12)=]...
mean(ResultPVA(idxDayLAP,:)),..
mean(ResultPVA(idxDayLML,})),..
I;
else
CPSubjPVA(CPidx,7:12)=]...
ResultPVA(idxDayLAP,:),...
ResultPVA(idxDayLML,:),...
I;

end

elseif Subjs(s,1)=="T'
TDidx=TDidx+1;
%first day

idxDayF=intersect(idxTDFirstDay,strma{Bubjs(s,:),SubjNames));

idxDayFAP=intersect(idxDayF,idxAP);
idxDayFML=intersect(idxDayF,idxML);
%last day
idxDayL=intersect(idxTDLastDay,strmat8hbjs(s,:),SubjNames));
idxDayLAP=intersect(idxDayL,idxAP);
idxDayLML=intersect(idxDayL,idxML);
if length(idxDayFML)>1 % average ovedultiple trials
TDSubjPVA(TDidx,1:6)=[mean(ResultR{dxDayFAP,)),...
mean(ResultPVA(idxDayFML,:)),..
I;
else
TDSubjPVA(TDidx,1:6)=[ResultPVA(ibayFAP,:),...
ResultPVA(idxDayFML,:),...
I;

end

if length(idxDayLML)>1 % average oveulhiple trials
TDSubjPVA(TDidx,7:12)=]...
mean(ResultPVA(idxDayLAP,>)),..
mean(ResultPVA(idxDayLML,})),..
I;
else
TDSubjPVA(TDidx,7:12)=]...
ResultPVA(idxDayLAP,:),...
ResultPVA(idxDayLML,:),...
I;

end

end% ends if (Cp and TD)
end % ends s

%%

Labels=char(...
[AP_PositionWeight_FirstDay_Lag',num2sa@(L))].,...
[[AP_VelocityWeight_FirstDay_Lag',num2stad(L))],...
[[AP_AccelerationWeight_FirstDay Lag',nuingdsag(L))],...
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[ML_PositionWeight_FirstDay_Lag',num2stag(L))],...
[ML_VelocityWeight_FirstDay_Lag',num2stgt(L))]....
[ML_AccelerationWeight_FirstDay_Lag',nunkag(L))]....
[[AP_PositionWeight_LastDay_Lag',num2stig(3)],...
[[AP_VelocityWeight_LastDay Lag',num2strfi(h))],...
[[AP_AccelerationWeight_LastDay Lag',num@sig(L))],...
[ML_PositionWeight_LastDay Lag',num2str¢i(R))],...
[ML_VelocityWeight_LastDay_Lag',num2str@.))],...
['ML_AccelerationWeight_LastDay_Lag',num2sag(L))]);

%collect results for this lag
AllLabels=char(AllLabels,Labels);
CpPVA=[CpPVA, CPSubjPVA];
TdPVA=[TdPVA, TDSubjPVA];
clear CPSubjPVA TDSubjPVA

end % ends L
AllLabels=AllLabels(2:end,:);

% create speadsheet for SPSS to do repeated méd$ONAS
%column with Group (1=CP, 0=TD)

% csvwrite('ANN4SPSSNormLag832.xIs',[ones(size(BUA,1),1);...
%  zeros(size(TDSubjPVA,1),1)],1,0)

% for i=1:24

%  L{1,i+1}=deblank(Labels(i,));

% end

% M=mat2cell([CPSubjPVA; TDSubjPVA],ones(1,63),0r24));

%

% xIswrite('ANN4SPSSNormLag832.xIs',M)

%

% csvwrite('ANN4SPSSNormLag7080.xIs',[ones(size(@HBVA,1),1);...
%  zeros(size(TDSubjPVA,1),1)],1,0)

% for i=1:24

%  L{1,i+1}=deblank(Labels(i,));

% end

% M=mat2cell([CPSubjPVA; TDSubjPVA],ones(1,63),0re24));

M=[zeros(size(TdPVA,1),1), TdPVA;ones(size(CpPVAL)CpPVA];
xlswrite(ANN4SPSSNormalizedFinalFinalProp1Neg, kg’

clc

AllLabels
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function [BestWeights1, BestWeights2, TimesThruLé&tggo] = BabyANNFunctCh5(Trainin,N,Plotlt)

% This network has 3 input neurons (posiiton, viyp& acceleration)
% and one output neuron for acceleration. Therdameurons in the
% hidden layer (in order to test different numbafraeurons)

Errorimproved=0;

minError=10"10;

Redo=0;

while Errorimproved==0 %redo if error not improvied learning

% Rescale to range -1 to +1
%Trainln= 2*(TrainIn- mean([max(TrainIn(:)),mifrainIn(:))]))/(max(TrainIn(:))-min(TrainIn(:)));

Input=TrainIn(1,:);

% Calculate target accelerations that we wachtculate

% i.e. this is the desired output of the ANN

TrainOut=(TrainIn(2:end,3));

% since sigmoid output is 0 to 1, need to saateleration to that

% range, so error calculation is meaningful.

TrainOut= (TrainOut+abs(min(TrainOut)))/rangeqinOut); %added for dissertation

% Initial weights are random
Weights1l=randn(3,N); % three input neurons
Weights2=randn(N,1); %only one output neuron

% Find initial cumulative error

for i=1:size(TrainIn,1)-1
Result1=TrainIn(i,:)*Weights1;
Resultl1=1./(1+exp(-Resultl));% output afden layer
Result2=Result1*Weights2;

% sigmiodal function for use with backprgption
Result2=1./(1+exp(-Result2)):% Output ofpui layer

% desired result-calculated result, betaoites
Error3(i)=TrainOut(i)-Result2;
end

% sum error over all 249 time steps
MeanError=mean(Error3);

PrevError=10710; % set previous error arbiyanigh so real
% error will be lower, and loop will be execdite

% %% Continue training as long as error is peeduced
TimesThruLoop=0;
%while abs(PrevError)>abs(MeanError)
while abs(PrevError-MeanError)>.00001 % i.eilgvkrror is changing
TimesThruLoop=TimesThruLoop+1;
%BackPropagate Error
Error2=(Result2.*(1-Result2).*MeanError*\géis2)'; % layer 3=>2
for i=1:3 % number of neurons in input laigethree
Errorl(i)=mean(TrainIn(:,i)).*(1-mean@nin(.,i))).*sum(Error2.*Weights1(i,:)); % layet=>1
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end

%Calculate weights

LearnRate=10; %slow learning

Weights1=Weightsl + LearnRate*(TrainIn(fErrorl)*(Resultl.*(1-Resultl));
Weights2=Weights2 + LearnRate*(Resultl.8#2)*(Result2.*(1-Result2));

% Calculate result using new weights
for i=1:size(Trainln,1)-1
Resultl=TrainIn(i,:)*Weights1;
% sigmiodal function for use with baoipagation %Changed!!!
Resultl=1./(1+exp(Resultl));
Result2=Result1*Weights2;
Result2=1./(1+exp(Result2));

Error3(i)=TrainOut(i)-Result2;
end

PrevError=MeanError;

if MeanError<minError
minError=MeanError;
BestWeights1=Weights1;
BestWeights2=Weights2;

end

MeanError=mean(Error3);

SaveError(TimesThruLoop)=MeanError;

end

if Plotlt==1

plot(1:TimesThruLoop,SaveError.*2)
xlabel('lteration’)

ylabel('Error squared")

pause

close

end

if abs(SaveError(end))<abs(SaveError(1))
Errorimproved=1;

else
disp('Redo")
Redo=Redo+1;
clear Error3 SaveError

end

end
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